Numerical Analysis on Deformation and Seepage of Deep Foundation Excavation in Inclined Interbedding Close to Rivers
-
摘要: 临河倾斜互层地质条件下深基坑开挖过程中会遇到一些特殊的岩土工程问题,且该方面的研究较少。以兰州市安宁区污水处理厂深基坑工程为例,通过现场监测并结合数值计算的方法,分析传统桩锚支护及管井降水方法下倾斜和水平互层条件下地下水渗流、周边地表位移规律的差异。结果表明:在基坑降水过程中,倾斜岩层中总水位曲线受地层不均匀影响呈阶梯形增长,且总水头低于水平岩层约2 m;开挖途中倾斜互层的桩顶竖向位移与周边地表沉降均明显大于水平互层,两者邻近建筑物一侧沉降差更大。随着倾斜互层逐步裸露,地下水存在绕流补给且坑底区域性渗水严重,加大了基坑开挖难度。因此,针对倾斜互层基坑开挖如何合理设计和优化止水及变形控制方案仍有待系统研究。Abstract: Some special geotechnical problems will be encountered during the process of deep foundation excavation in inclined interbedding strata close to rivers, but up to now the related study has still been insufficient. Taking the deep foundation excavation project of a sewage-treatment plant in Anning District of Lanzhou as an example, through in-situ monitoring and numerical calculations, the differences of groundwater seepage and surrounding subsidence of ground, during deep ercavation supported with piles and anchor bars combined with dewatering with dewatering wells, between inclined and horizontal interbedding were analyzed. The results showed that in the process of dewatering during foundation excavation, the total water level curve in interbedding strata increased in a stepped pattern, and the total water head was about 2 m lower than that in horizontal rock strata. During excavation, the vertical displacement of pile tops and ground subsidence adjacent to the trench in inclined interbedding were significantly greater than those in horizontal interbedding, and the subsidence difference between the two adjacent to buildings was greater. With the gradually exposure of inclined interbedding strata, the groundwater bypassed recharge, and severe water seepage was in the local areas at the bottom of the trench, which increased the difficulty of foundation excavation. Therefore, how to reasonably design and optimize the water-stop and deformation control scheme for foundation excavation in inclined interbedding remaind to be systematically studied.
-
[1] 金小荣,俞建霖,祝哨晨,等. 基坑降水引起周围土体沉降性状分析[J]. 岩土力学,2005(10):54-60. [2] 郑刚,朱合华,刘新荣,等. 基坑工程与地下工程安全及环境影响控制[J]. 土木工程学报,2016,49(6):1-24. [3] 李敬超. 基坑开挖中渗流场与变形稳定分析研究[J]. 黑龙江水利科技,2019,47(7):21-23. [4] 叶帅华,丁盛环,龚晓南,等. 兰州某地铁车站深基坑监测与数值模拟分析[J]. 岩土工程学报,2018,40(增刊1):177-182. [5] 叶帅华,黄安平,高升. 兰州某地铁车站深基坑开挖变形特性及环境影响分析[J]. 水利水电技术,2020,51(1):12-22. [6] 周勇,叶炜钠,高升. 兰州地铁某车站深基坑开挖变形特性分析[J]. 岩土工程学报,2018,40(增刊1):141-146. [7] 周勇,王晓莉,朱彦鹏,等. 兰州地铁湿陷性黄土深基坑在降低水位条件下的渗流稳定性分析[J]. 中国铁道科学,2017,38(1):86-94. [8] 刘胜利,蒋盛钢,曹成勇. 强透水砂卵地层深基坑地下水控制方案比选与优化设计[J]. 铁道科学与工程学报,2018,15(12):3189-3197. [9] 李方明,陈国兴,刘雪珠. 悬挂式帷幕地铁深基坑变形特性研究[J]. 岩土工程学报,2018,40(12):2182-2190. [10] 郑刚,曾超峰. 基坑开挖前潜水降水引起的地下连续墙侧移研究[J]. 岩土工程学报,2013,35(12):2153-2163. [11] 郑刚,赵悦镔,程雪松,等. 复杂地层中基坑降水引发的水位及沉降分析与控制对策[J]. 土木工程学报,2019,52(增刊1):135-142. [12] 杨清源,赵伯明. 潜水层基坑降水引起地表沉降试验与理论研究[J]. 岩石力学与工程学报,2018,37(6):1506-1519. [13] 黄应超,徐杨青. 深基坑降水与回灌过程的数值模拟分析[J]. 岩土工程学报,2014,36(增刊2):299-303. [14] 常明云,赵明,魏秀秀. 强透水砂卵石复杂地层的高压旋摆喷灌浆处理技术[J]. 岩土力学,2009,30(5):1409-1414. [15] 薛丽影,杨斌,刘丰敏. 基坑工程地下水渗流模型试验系统研究[J]. 岩土工程学报,2017,39(增刊1):126-130,11. [16] 刘国彬,王卫东,基坑工程手册[M]. 2版. 北京:中国建筑工业出版社,2009. [17] 乔建刚,彭瑞,李景文,等. 基于修正莫尔库仑的基坑开挖对隧道安全影响研究[J]. 中国安全生产科学技术,2022,18(2):177-183. [18] 尹利洁,李宇杰,朱彦鹏,等. 兰州地铁雁园路站基坑支护监测与数值模拟分析[J]. 岩土工程学报,2021,43(增刊1):111-116. [19] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009—2012[S]. 北京:中国建筑工业出版社,2012. [20] ZENG C F, WANG S, XUE X L, et al. Evolution of deep ground settlement subject to groundwater drawdown during dewatering in a multi-layered aquifer-aquitard system: Insights fromnumerical modelling[J/OL]. Journal of Hydrology, 2021,603, Part C [2022-01-14].https://doi.org/10.1016/j.jhydrol.2021.127078. [21] 东南大学,浙江大学,湖南大学,等. 土力学[M]. 4版. 北京:中国建筑工业出版社,2016.
点击查看大图
计量
- 文章访问数: 61
- HTML全文浏览量: 9
- PDF下载量: 2
- 被引次数: 0