Drag Coefficients of Elevator Shaft of Ultra-High Long-Span Transmission Tower with Height of 385 Meters
-
摘要: 针对大跨越输电塔电梯井筒的风荷载采用节段模型和整塔模型的风洞试验进行研究,分析有无爬梯、有无塔体干扰对井筒阻力系数的影响,并与各国规范中圆柱阻力系数的规定值对比,最后给出了井筒阻力系数的设计建议值。研究表明:有爬梯井筒的阻力系数大于无爬梯井筒的阻力系数;有塔体干扰下井筒阻力系数随风向变化显著,在45°达到最小值,在35°达到最大值;节段模型试验和整塔模型试验获得的井筒气动力系数比较接近;给出了电梯井筒在有塔体干扰下阻力系数随风向角的建议值,无爬梯井筒最大的阻力系数为0.93,与GB 50009—2012《建筑结构荷载规范》推荐的光滑圆柱0.9的阻力系数比较接近。Abstract: Wind tunnel tests were conducted on sectional models and whole tower models to obtain the wind loading on the elevator shaft of long-span transmission towers. The influence of climbing ladders and interference of tower body on the drag coefficient of the elevator shaft was analyzed. The test results were compared with those regulated in different countries’ codes. Finally, the drag coefficients of the elevator shaft were recommended for the design. The results showed that the drag coefficients of elevator shaft with climbing ladder was larger than that of shaft without climbing ladder. With the interference effect of tower body, the drag coefficients significantly varied with the wind azimuth, reaching their maximum value at 35 degree and their minimum value at 45 degree. The aerodynamic coefficients of the shaft obtained from sectional model and whole tower model tests were almost equaled. The drag coefficients of the shaft with respect to wind azimuth under the interference of tower body were recommended. The maximum value of elevator shaft without climbing ladder was 0.93, which was quite close to 0.9 that was the drag coefficient of smooth circular cylinder recommended by Load Code for the Design of Building Structures (GB 50009-2012).
-
[1] 电子规划设计总院.架空输电线路荷载规范:DL/T 5551—2018[S]. 北京: 中国计划出版社, 2018. [2] SIMIU E, SCANLAN R H. Wind effects on structures: fundamentals and applications to design[M]. New York: Wiley, 1996. [3] 孙一飞, 乔富贵, 贾娅娅, 等. 二维细长柱体气动力特性试验研究[J]. 石家庄铁道大学学报(自然科学版), 2019, 32(2):10-15. [4] RODRIGUEZ I, LEHMKUHL O, PIOMELLI U, et al. LES-based study of the roughness effects on the wake of a circular cylinder from subcritical to transcritical Reynolds numbers[J]. Flow Turbulence and Combustion, 2017, 99(3):729-763. [5] 刘庆宽, 邵奇, 郑云飞, 等. 雷诺数对圆柱气动力和流场影响的试验研究[J].试验流体力学, 2016, 30(4):7-13. [6] 马文勇, 袁欣欣, 张晓斌, 等. 圆形断面在35 k~330 k雷诺数范围的气动力特性研究[J]. 工程力学, 2015, 32(增刊1):348-352. [7] 沈国辉, 姚剑锋, 郭勇, 等. 直径30 cm圆柱的气动力参数和绕流特性研究 [J]. 振动与冲击, 2020, 39(6):22-28. [8] 王振华, 金晓华, 何天胜. 500 kV新崖门大跨越输电塔结构设计[J]. 电力建设, 2010, 31(9):30-33. [9] 史耀虎, 高强, 任超, 等. 大跨越输电塔电梯井道在静风载荷下的受力分析[J]. 苏州大学学报(工科版), 2009, 29(4):30-32,44. [10] 沈国辉, 项国通, 邢月龙, 等. 2种风场下格构式圆钢塔的天平测力试验研究[J],浙江大学学报(工学版),2014,48(4):704-710. [11] CEN. Eurocode 3-design of steel structures-part 3-1: towers, masts and chimneys-towers and masts: EN 1993-3-1[S]. Brussels, Belgium: CEN,1993. [12] 中华人民共和国住房和城乡建设部.建筑结构荷载规范:GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012. [13] ASCE. Minimum design loads and associated criteria for buildings and other structures:ASCE/SEI 7-16[S]. Virginia: American Society of Civil Engineers, 2017. [14] ECS. Eurocode l: Actions on structures-part 1-4: general actions-wind actions:EN 1991-1-4∶2005[S]. Brussels: European Committee for Standardization, 2005. [15] AIJ. Recommendations for loads on buildings:RLB-AIJ∶2004[S]. Tokyo: Architectural Institute of Japan, 2004. [16] JTC. Structural design actions-part 2: wind actions:AS/NZS 1170.2∶2011[S]. Sydney: Joint Technical Committee, 2011.
点击查看大图
计量
- 文章访问数: 92
- HTML全文浏览量: 18
- PDF下载量: 3
- 被引次数: 0