Mechanical Properties Analysis of Core Reinforced Concrete-Filled Pile-Cap Joint Under Tensile-Bending Load
-
摘要: 预应力高强混凝土(PHC)管桩-承台连接节点处于复杂受力环境,其受力机理亟待深入研究。基于ABAQUS建立不截桩加筋填芯混凝土桩-承台节点模型,对其在拉弯联合加载工况下的受力机理进行研究,验证数值模拟过程的合理性,并考察了管桩嵌入深度和承台高度对节点各部件应力分布、混凝土损伤及荷载-位移曲线的影响。研究结果表明:采用有限元数值模拟得到的加筋填芯桩-承台节点的荷载-位移曲线、管桩桩身和承台的损伤与试验结果吻合;随着管桩嵌入深度和承台高度的增加,节点的初始刚度和承载力显著提高;当管桩嵌入深度较小时,节点的刚度下降主要是由预应力筋、锚筋的屈服和混凝土部件的损伤引起的;当管桩嵌入深度较大或承台高度较小时,节点整体刚度的下降是由混凝土部件的损伤引起的。Abstract: The PHC pipe pile-cap joint is in a complex stress environment, and its mechanical mechanism needs to be further studied. ABAQUS finite element software was used to establish the calculation model of core reinforced concrete-filled pile-cap joint, and the mechanical mechanism of the joint under the combined loading condition of tension and the bending moment was studied. The effects of the embedded depth of pile, the height of cap on the stress distribution and the tensile capacity of the pile were investigated. The calculation results showed that the load-displacement curves of core reinforced concrete-filled pile-cap joint and the damage characteristics of pipe pile and cap calculated by finite element analysis were close to the experimental results. With the increase of pile embedment depth and cap height, the initial stiffness and bearing capacity of the joint increased significantly. When the embedded depth of pipe pile was small, the stiffness of joint was mainly caused by the yield of prestressed reinforcement, anchor reinforcement and the damage of concrete components. When the embedded depth of pipe pile was large or the height of cap was small, the overall stiffness of joint was decreased due to the damage of concrete components.
-
Key words:
- PHC pipe pile /
- pile-cap joint /
- reinforced core filling /
- finite element analysis /
- parameter analysis
-
[1] 邓友生, 孙宝俊, 邬忠强. 预应力混凝土管桩的应用研究及发展前景[J]. 建筑技术, 2003(4):263-266. [2] 邢皓枫, 赵红崴, 叶观宝, 等. PHC管桩工程特性分析[J]. 岩土工程学报, 2009, 31(1):36-39. [3] 高文生, 刘金砺, 赵晓光, 等. 关于预应力混凝土管桩工程应用中的几点认识[J]. 岩土力学, 2015, 36(增刊2):610-616. [4] 阮起楠. 地震区预应力混凝土管桩设计探讨[J]. 混凝土与水泥制品, 2000(4):23-28. [5] 苏振明, 辛艺阳. PHC桩竖向抗拔静载试验[J]. 建筑科学, 2006(5):43-46. [6] 李伟兴, 万月荣, 刘庆斌. 世博会主题馆抗拔PHC管桩新型连接的计算分析及试验研究[J]. 建筑结构学报, 2010, 31(5):86-94. [7] 汪加蔚, 裘涛, 干钢, 等. 预应力混凝土管桩结构抗拉强度的试验研究[J]. 混凝土与水泥制品, 2004(3):24-27. [8] 周鹏, 马海龙. 普通抗拔桩与托底抗拔桩荷载传递数值分析[J]. 工业建筑, 2021, 51(3):147-152. [9] 张尚根, 吴涛, 尹峰, 等. 抗拔桩的变形分析[J]. 工业建筑, 2002, 32(11):40-41. [10] 郭杨,崔伟,陈芳斌,等.一种抱箍式连接PHC抗拔管桩的计算分析和试验研究[J].岩土工程学报,2013,35(增刊2):1007-1010. [11] 王铁成, 王文进, 赵海龙, 等. 不同高强预应力管桩抗震性能的试验对比[J]. 工业建筑, 2014, 44(7):84-89. [12] 戎贤, 徐晓哲, 李艳艳. 预应力高强混凝土管桩抗震性能试验研究[J]. 工业建筑, 2013, 43(7):72-75. [13] NAGUE T, HAYASHI S. Earthquake-resistant property of prefabricated high-strength concrete pile, high performance materials in bridges[C]//Proceedings of the International Conference. 2003:73-82. [14] 崔川. 混合配筋PHC管桩抗剪承载力模拟分析[J]. 建筑结构, 2019, 49(增刊1):806-810. [15] 吴锋, 许耀金, 张洁, 等. PHC管桩抗剪试验研究[J]. 水运工程, 2020(3):129-135. [16] DING X M, ZHANG T,LI P.A theoretical analysis of the bearing performance of vertically loaded large-diameter pipe pile groups[J]. Journal of Ocean University of China, 2016, 15(1):57-68. [17] 柳炳康, 李建宏, 张星宇, 等. 预应力填芯管桩抗弯性能与延性特征的试验[J]. 工业建筑, 2007, 37(3):46-49,4. [18] 侯中伟, 吕铎, 马瑞君, 等. 新型抗拔管桩承台接桩连接设计研究[J]. 工业建筑, 2019, 49(4):52-57. [19] 么梦阳. 不同节点构造形式下的PHC管桩与承台连接节点水平承载力分析[D]. 太原:太原理工大学, 2019. [20] 王铁成, 杨志坚, 赵海龙, 等. PHC管桩与承台连接节点试验研究与有限元分析[J].天津大学学报(自然科学与工程技术版), 2015, 48(6):527-534. [21] 倪国泉. 预应力高强混凝土预制桩承台节点抗震性能研究[D]. 北京:清华大学, 2015. [22] 张伟, 贺武斌, 郭昭胜, 等. 劲性填芯PHC管桩与承台连接节点抗弯试验研究[J]. 施工技术, 2014, 43(13):34-37,41. [23] 邢克勇, 赵春晓, 赵怀宇, 等. 预应力管桩与承台连接性能试验研究[J]. 国防交通工程与技术, 2012, 10(5):22-26,52. [24] 杨志坚, 雷岳强, 谭雅文, 等. 改进的PHC管桩与承台连接处桩端受力性能研究[J]. 工程力学, 2018, 35(增刊1):223-229. [25] 中华人民共和国住房和城乡建设部. 预应力混凝土管桩:10G409[S]. 北京:中国计划出版社, 2010. [26] 中华人民共和国住房和城乡建设部. 预应力混凝土管桩技术标准:JGJ/T 406-2017[S]. 北京:中国建筑工业出版社, 2017. [27] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社, 2015.
点击查看大图
计量
- 文章访问数: 166
- HTML全文浏览量: 24
- PDF下载量: 17
- 被引次数: 0