Experimental Research on Mechanical Properties of Semi-Grouting Sleeve Connection After Being Subjected to High Temperature
-
摘要: 研究了高温对灌浆料抗压强度的影响,并推导得到高温后灌浆料抗压强度的计算式。为了研究高温后半灌浆套筒连接的力学性能,以温度、锚固长度、保护层厚度为变量,设计了高温后半灌浆套筒连接的拉拔试验。试验结果表明:试件的破坏模式随着温度的升高,从钢筋断裂破坏逐渐变为钢筋拔出破坏;增加锚固长度可以有效提高半灌浆套筒连接的力学性能,在600℃时,锚固长度为120 mm的试件极限荷载和极限位移的损失分别为6%和46%,远远小于锚固长度为100 mm的试件;保护层的存在有利于提高半灌浆套筒连接的承载力和延性。根据试验结果推导得到高温后半灌浆套筒连接的承载力计算式,计算值和试验值吻合较好。Abstract: The compressive strength of grout after high temperature was studied, and the formula for calculating the compressive strength of grout after being subjected to high temperature was derived. In order to study the mechanical properties of semi-grouting sleeve connection after of high temperature, the pull-out test of semi-grouting sleeve connection after being subjected to high temperature was designed with temperature, anchorage length and protective layer thickness as variables. The test results showed that the failure mode of specimens changed with the increase of temperature, and the failure mode changed gradually from steel bar fracture failure to steel bar pull-out failure. Increasing anchorage length could effectively improve the mechanical properties of semi-grouting sleeve connections. At 600℃, the ultimate load and ultimate displacement losses of specimens with anchor length of 120 mm were 6% and 46% respectively, which were far smaller than those of specimens with anchor length of 100 mm. The existence of protective layer was beneficial to improve the bearing capacity and ductility of semi-grouting sleeve connections. Based on the test results, the bearing capacity formula of semi-grouting sleeve connection after being subjected to high temperature was deduced, and the predicted values were in good agreement with the test values.
-
[1] MARAVEAS C, TSAVDARIDIS K D, NADJAI A. Fire resistance of unprotected ultra shallow floor beams (USFB):a numerical investigation[J]. Fire Technology, 2017, 53(2):609-627. [2] SHAKYA A M, KODUR V. Response of precast prestressed concrete hollowcore slabs under fire conditions[J]. Engineering Structures, 2015, 87(15):126-138. [3] KODUR V, SHAKYA A M. Modeling the response of precast, prestressed concrete hollow-core slabs exposed to fire[J]. PCI Journal, 2014, 59(3):78-94. [4] 郑永乾,庄金平. 高强混凝土墙耐火性能的有限元分析[J]. 福建工程学院学报, 2009, 7(3):210-215. [5] 韩林海. 钢管混凝土柱耐火性能和抗火设计的特点[J]. 安全与环境学报, 2001, 1(4):36-40. [6] 顾海松,王新堂,徐金灿. 开孔薄壁钢梁-轻骨料混凝土装配式组合楼板受火试验研究[J]. 建筑结构学报, 2016, 37(5):48-56. [7] 王新堂,任鹏飞,王万祯. 薄壁钢梁-陶粒混凝土装配式组合楼板受火后受力性能研究[J]. 建筑结构学报, 2017, 38(4):70-80. [8] 刘激扬,黄益良,倪照鹏,等.装配式钢桁架组合楼盖耐火性能试验研究[J]. 消防科学与技术, 2014, 33(11):1264-1267. [9] 吴刚,冯德成. 装配式混凝土框架节点基本性能研究进展[J]. 建筑结构学报, 2018, 39(2):1-16. [10] 陈建伟,王占文,鞠士龙,等. 半灌浆套筒钢筋偏心连接受拉性能试验研究与数值模拟[J]. 建筑结构学报, 2020, 41(增刊2):160-171. [11] 王占文,陈建伟,鞠士龙,等. 二次补浆对钢筋套筒灌浆连接性能影响试验研究[J]. 建筑结构, 2020, 50(22):45-50. [12] 中华人民共和国住房和城乡建设部. 钢筋机械连接技术规程:JGJ 107-2016[S]. 北京:中国建筑工业出版社, 2016. [13] 中华人民共和国住房和城乡建设部. 水泥基灌浆材料应用技术规范:GB/T 50448-2015[S]. 北京:中国建筑工业出版社, 2015. [14] 余琼,袁炜航,尤高帅. 带肋钢筋与灌浆料粘结性能试验研究及有限元分析[J]. 结构工程师, 2016, 32(6):113-122. [15] 肖建庄,黄均亮,赵勇. 高温后高性能混凝土和细晶粒钢筋间粘结性能[J]. 同济大学学报(自然科学版), 2009, 37(10):1296-1301. [16] 李卫, 过镇海. 高温下混凝土的强度和变形性能试验研究[J]. 建筑结构学报, 1993, 14(1):8-16. [17] 王振东.混凝土及砌体结构[M].北京:中国建筑工业出版社,2002.
点击查看大图
计量
- 文章访问数: 119
- HTML全文浏览量: 25
- PDF下载量: 2
- 被引次数: 0