Research on Economical Design Pattern of Low Impact Development in External Environment of Building: A Case Study of Nanyang No.1 High School
-
摘要: 建筑外环境低影响开发(LID)是实现城市高效径流控制与雨水资源利用的重要途径,但目前在LID设施布局时存在设施规模过大、径流利用效率低等建设浪费问题。基于建筑外环境径流特点,依据不同LID设施功能特征,耦合了SWMM模型与NSGA-II算法,构建兼顾径流控制、雨水资源利用率及LID设施成本的建筑外环境经济型低影响开发设计模式,以南阳一中校园为试验对象,运用该设计模式,获取其LID设施优化布局方案,并以2021年降雨模拟验证其径流控制与节水效果。模拟结果表明,在2021年降雨情景中实验对象LID设施优化布局方案的年径流控制率达82.0%,年可节约用水成本5.19万元。研究结果细化了LID设施布局应用场景,弥补了传统低影响开发设计方法对雨水资源利用、LID设施成本量化的缺失,有助于优化LID设施建设投资,推进我国"海绵城市"的高绩效、高质量建设。Abstract: Low-impact development (LID) in the external environment of buildings is an important way to achieve efficient urban runoff control and rainwater resource utilization, however, there are some problems in the distribution of LID controls, such as excessive facility scale and low runoff utilization efficiency, which cause construction waste. Based on the runoff characteristics of the external environment of the building and the functional guidance characteristics of different LID controls, an economical design pattern of low-impact development in external environment of building was formed with SWMM model and NSGA-II algorithm, which took into account runoff control, rainwater resource utilization and cost of LID controls. Taking the campus of Nanyang No. 1 High School as the experimental object, the optimal distribution of LID controls was obtained by the design pattern, and its effect was quantified by simulation based on 2021 daily precipitation. The results showed that the annual runoff control ratio of the experimental object was 82.0%, and 51 900 yuan of water could be saved in 2021. The research results refined the application scenario of LID controls distribution, made up for the lack of traditional low-impact development that ignored quantification of rainwater utilization and LID controls cost, improved the optimization of the investment in LID controls construction, and promoted the high-performance and high-quality construction of "Sponge City".
-
[1] 钱健, 宋雷. 建筑外环境设计[M]. 上海:同济大学出版社, 2001. [2] 方帅,刘绪为,白永强,等.建筑与小区低影响开发的设计思路与计算分析[J].中国给水排水,2017,33(8):60-64. [3] 林辰松. 半湿润地区集雨型绿地设计研究[D].北京:北京林业大学,2017. [4] 高喜红.低影响开发在加拿大大瀑布社区中的应用[J].工业建筑,2018,48(3):208-213. [5] 李哲, 成玉宁, 陈菲菲,等. 面向全地表径流的科创园区"建筑-景观"协同改造设计研究:以苏州金枫产业园为例[J]. 中国园林, 2019, 35(6):18-22. [6] 周国华,徐国宾,陈亮,等.北方缺水城市产业园海绵城市建设水量平衡案例探究[J].给水排水,2020,56(增刊1):619-622. [7] 资强,殷乐,杨仲韬,等.基于容积法设计的海绵场地理论径流控制能力研究[J].中国给水排水,2020,36(16):24-29. [8] 于淼,戈晓宇.基于SWMM模拟的首钢西十地块低影响开发系统雨洪调控效果研究[J].北京林业大学学报,2018,40(12):97-109. [9] DUAN H F, LI F, YAN H. Multi-objective optimal design of detention tanks in the urban stormwater drainage system:LID implementation and analysis[J]. Water Resources Management, 2016, 30(13):4635-4648. [10] 邵明,李雄,戈晓宇,等.海绵城市视角下SUSTAIN模型在城市绿地设计中的应用[J].工业建筑,2017,47(5):56-61. [11] 李沐寒,尹海伟,唐爽.SUSTAIN支持下的LID建设成本效益研究:以南京市鼓楼区为例[J].风景园林,2020,27(11):57-63. [12] 刘家琳,李武肸,彭子岳,等.基于水文-成本综合绩效的山地公园雨洪管理景观系统策略研究[J].风景园林,2021,28(7):90-96. [13] 林辰松,董宇翔,陈泓宇,李雄.基于NSGA-Ⅱ算法的集雨型绿地低影响开发设施规模优化计算方法及应用:以南阳院士小镇为例[J].风景园林,2020,27(12):92-97. [14] 沈洁,龙若愚,陈静.美国LEED-ND/SITES/LPS雨水管理评价标准对中国海绵城市绩效评价的启示[J].风景园林,2019,26(3):81-86. [15] 沈洁,龙若愚,陈静.基于景观绩效系列(LPS)的中美雨水管理绩效评价比较研究[J].风景园林,2017(12):107-116. [16] 朱超. 基于低影响开发雨水利用在某校园应用研究[D].西安:西安理工大学,2017. [17] 林辰松,戈晓宇,邵明,等.城市公园中水利用策略研究[J].工业建筑,2016,46(8):65-68,149. [18] WANG J, LIU J, WANG H, et al. Approaches to multi-objective optimization and assessment of green infrastructure and their multi-functional effectiveness:a review[J]. Water, 2020, 12(10):2714. [19] 李旦, 叶长青. 基于耦合SWMM模型和NSGA-Ⅱ算法的多目标低影响开发措施优化设计方法及应用[J]. 水电能源科学, 2019, 226(6):64-67. [20] MARTIN-MIKLE C J, de BEURS K M, JULIAN J P, et al. Identifying priority sites for low impact development (LID) in a mixed-use watershed[J]. Landscape and Urban Planning, 2015, 140(4):29-41. [21] JOHNSON R D, SAMPLE D J. A semi-distributed model for locating stormwater best management practices in coastal environments[J]. Environmental Modelling & Software, 2017, 91(5):70-86. [22] GHODSI S H, KERACHIAN R, ZAHMATKESH Z. A multi-stakeholder framework for urban runoff quality management:application of social choice and bargaining techniques[J]. Science of the Total Environment, 2016, 550:574-585. [23] RAEI E, ALIZADEH M R, NIKOO M R, et al. Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty[J]. Journal of Hydrology, 2019, 579:1-13. [24] 孟兆祯. 风景园林工程[M]. 北京:中国林业出版社, 2012. [25] 邱振存,管健.园林绿化植物灌溉需水量估算[J].节水灌溉,2011(4):48-50,54. [26] 中华人民共和国住房和城乡建设部.绿化种植土壤:CJ/T 340-260[S].北京:中国标准出版社,2016. [27] 中华人民共和国住房和城乡建设部.海绵城市建设技术指南[M].北京:中国建筑工业出版社,2014. [28] DEB K, SINDHYA K, OKABE T. Self-adaptive simulated binary crossover for real-parameter optimization[C]//Proceedings of the 9th annual conference on genetic and evolutionary computation. 2007:1187-1194. [29] 张小富.兼顾功能、环境和效益的LID设施配置优化方法研究[J].水资源开发与管理,2020(6):24-28. [30] BAGLIVI A, FIORESE G, GUARISO G, et al. Valuing crop diversity in biodiesel production plans[J]. Energy, 2015, 93(part2):2351-2362.
点击查看大图
计量
- 文章访问数: 112
- HTML全文浏览量: 20
- PDF下载量: 11
- 被引次数: 0