Seismic Fragility Analysis of Steel Frame Structure with Lateral Resistance Energy-Consuming Device
-
摘要: 对可更换抗侧耗能装置的钢框架结构体系构造进行阐述,建立可更换抗侧耗能装置的柱脚节点有限元模型并验证其正确性。在此基础上建立可更换抗侧耗能装置的钢框架结构有限元模型,采用22条地震波分别对传统刚接框架结构(RSF)和可更换抗侧耗能装置的钢框架结构(LRED-SF)进行基于增量动力分析方法(IDA)的地震易损性分析,对比两种结构的易损性曲线和抗倒塌储备系数,并分析抗侧剪切件截面宽度、厚度和柱脚横梁刚度比对可更换抗侧耗能装置的钢框架结构地震易损性的影响。研究表明:经过合理设计的可更换抗侧耗能装置的钢框架结构不仅可以满足结构的抗震性能要求,而且其抗震性能优于传统钢框架结构体系;抗侧剪切件宽度越大,结构抗倒塌能力越强,但当抗侧剪切件宽度增加到一定程度时,结构抗倒塌能力会下降;柱脚横梁刚度比越大,结构抗倒塌能力越强。Abstract: The steel frame structure with lateral resistance energy-consuming device (LRED-SF) is first introduced. The finite element model of the earthquake-resilient prefabricated column foot joints with lateral resistance energy-consuming device was established and its correctness was verified. And then the finite element model of LRED-SF was established. Based on the incremental dynamic analysis method (IDA), the seismic fragility analysis with 22 seismic waves was carried out on the rigid steel frame (RSF) and LRED-SF. The seismic fragility curves and the structural collapse margin ratio (CMR) of the two structures were compared. The influence of the width and thickness of the lateral resistance shear member (LRSM) and the stiffness ratio of the beam of LRSM on the seismic fragility of LRED-SF was analyzed. The result showes that the seismic performance of LRED-SF is better than RSF. The structural collapse resistance is positively related to the width of LRSM and the stiffness ratio of the beam of LRSM. However, when the width of LRSM increases to a certain extent, the collapse resistance of the structure will decrease.
-
Key words:
- recoverable function /
- steel frame structure /
- IDA /
- fragility /
- collapse margin ratio
-
[1] 吕西林,陈云,毛苑君.结构抗震设计的新概念:可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7): 941-948. [2] 吕西林, 周颖, 陈聪. 可恢复功能抗震结构新体系研究进展[J]. 地震工程与工程振动, 2014, 34(4): 130-139. [3] 吕西林, 武大洋, 周颖. 可恢复功能防震结构研究进展[J]. 建筑结构学报, 2019, 40(2): 1-15. [4] MANSOUR N, CHRISTOPOULOS C, TREMBLAY R. Experimental validation of replaceable shear links for eccentrically braced steel frames[J]. Journal of Structural Engineering, 2011, 137(10): 1141-1152. [5] CASTIGLIONI C A, KANYILMAZ A, CALADO L. Experimental analysis of seismic resistant composite steel frames with dissipative devices[J]. Journal of Constructional Steel Research, 2012(76): 1-12. [6] 吕西林, 陈云, 蒋欢军. 带可更换连梁的双肢剪力墙抗震性能试验研究[J]. 同济大学学报(自然科学版), 2014, 42(2): 175-182. [7] 陈以一, 贺修樟. 配置可更换角钢连接构造的钢框架试验研究[J]. 钢结构(中英文), 2020, 35(8): 1-16. [8] 刘阳, 郭子雄, 贾磊鹏, 等. 震损可更换组合柱抗震性能试验研究[J]. 建筑结构学报, 2020, 41(7): 45-54. [9] JIANG Z Q, YANG X F, DOU C, et al. Cyclic testing of replaceable damper: Earthquake-resilient prefabricated column-flange beam-column joint[J]. Engineering Structures, 2019(183): 922-936. [10] ZHANG A L, ZHANG H, JIANG Z Q, et al. Low cycle reciprocating tests of earthquake-resilient prefabricated column-flange beam-column joints with different connection forms[J/OL]. Journal of Constructional Steel Research, 2020(164)[2021-12-21].https://www.sciencedirect.com/science/article/pii/S0143974X19306662?via%3Dihub. [11] 杨晓峰. 可恢复功能装配式柱脚节点及框架抗震性能研究[D]. 北京:北京工业大学, 2020. [12] 姜子钦, 杨晓峰, 张爱林, 等. 带可更换抗侧耗能装置的装配式钢框架结构静力性能研究[J]. 北京工业大学学报, 2021, 47(4): 365-373,382. [13] ZHANG A L, CHEN X, JIANG Z Q, et al. Experiment on seismic behavior of earthquake-resilience prefabricated cross hinge column foot joint[J/OL]. Journal of Constructional Steel Research, 2022(189)[2021-12-21].https:// www.sciencedirect.com/science/article/pii/S0143974X21005381?via%3Dihub. [14] 吕大刚, 王光远. 基于可靠度和灵敏度的结构局部地震易损性分析[J]. 自然灾害学报, 2006, 15(4): 157-162. [15] NASSERASADI K. Developing seismic fragility function of structures by stochastic approach[J]. Asia Journal of Civil Engineering, 2008, 8(6): 183-200. [16] 徐善华, 张宗星, 李柔, 等. 锈蚀钢框架地震易损性评定方法[J]. 工程力学, 2018, 35(12): 107-115. [17] 朱凯铭, 郭玉荣. 主余震序列作用下屈曲约束支撑框架易损性分析[J]. 结构工程师, 2019, 35(6): 109-115. [18] 方成, 黄琳婷, 王伟, 等.基于混合控制的自复位支撑钢框架抗震性能研究[J]. 建筑结构学报, 2020, 41(增刊2): 180-191. [19] 王伟, 胡书领, 邹超. 基于增量动力分析的梁贯通式支撑钢框架地震易损性研究[J]. 建筑结构学报, 2021, 42(4): 42-49. [20] LUCO N, CORNELL C A. Effects of connection fractures on SMRF seismic drift demands[J]. Journal of Structural Engineering, 2000, 126(1): 127-136. [21] LUCO N, CORNELL C A. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions[J]. Earthquake Spectra, 2007, 23(2): 357-392. [22] Federal Emergency Management Agency (FEMA).Earthquake loss estimation methodology HAZUS 99Service Release 2 (SR2) technical manual [S].Washington,D. C.: FEMA, 2001.
点击查看大图
计量
- 文章访问数: 64
- HTML全文浏览量: 5
- PDF下载量: 5
- 被引次数: 0