Study on Crystallization Effect of New Immobilized Materials
-
摘要: 针对混凝土裂缝微生物自修复技术的矿化结晶效果,为提高微生物矿化结晶效率,采用一种新型多孔的材料——南海珊瑚礁钙质砂固载巴氏芽孢杆菌。通过抗渗性能等试验验证了南海珊瑚礁钙质砂为载体材料的优越性;研究分析了南海小颗粒珊瑚礁钙质砂的物理力学性能,其吸水率达17%,压碎值为26%,碳酸钙含量超过97%,具有较大的孔隙率和比表面积,机械强度稳定,能较好地保护细菌芽孢,是理想的微生物固载材料;将巴氏芽孢杆菌固载于南海珊瑚礁钙质砂后进行混凝土裂缝自修复技术的抗渗性试验及实际工程结晶效果的验证,研究发现:微生物经南海珊瑚礁钙质砂固载后,试件气体渗透率下降10%;渗透系数下降2个数量级,扫描电镜观测到试件裂缝处被方解石型碳酸钙晶体沉淀物填充,C同位素分析得到在实际工程裂缝修复处存在微生物生成的方解石型碳酸钙晶体沉淀物。结果表明:采用南海珊瑚礁钙质砂固载可对细菌芽孢起到良好保护作用,提高了微生物矿化结晶效率,有效改变了混凝土中裂缝的孔隙特征和结构。Abstract: Aiming at the crystallization effectiveness of the microbial self-healing technology for concrete cracks, and to improve the efficiency of microbial crystallization, a new material, namely calcareous sand of coral reefs, was used to immobilize microorganisms, and the superiority of calcareous sand of coral reefs to repair cracks in concrete and crystallization effect in the practice engineering was verified was verified by means of an impermeability test. The physical and mechanical properties of calcareous sand of coral reefs were analyzed, which had a water absorption ratio of 17%, a crushing value of 26%, and the calcium carbonate content more than 97%. The study showed that calcareous sand of coral reefs was of learger porosity and specific surface areas. It was good living space and an ideal immobilized material for microorganisms. Sporosarcina pasteurii were immobilized in calcareous sand of coral reefs, and the impermeability test for self-healing concrete cracks were subsequently implemented. The study results revealed that after immobilization and self-renovation, the gas penetration decreased by 10%, the permeability coefficient decreased by 2 orders of magnitude. In addition, calcite-type calcium carbonate crystal precipitates filling in cracks by SEM scanning were observed, and microbially generated calcite calcium carbonate crystal sediments were observed by the carbon-iostope ratio determination analysis in repaired cracks in practice engineering. The study showed that the immobilization of calcareous sand of coral reefs played a good role in protecting microorganisms, which improved the efficiency of microbial crystallization and effectively ameliorated the pore characteristics and structure of concrete cracks.
-
Key words:
- immobilized materials /
- microorganism /
- self-healing /
- effectiveness of crystallization
-
[1] 李静华. 固定化微生物强化修复石油污染土壤的研究[D].广州:华南理工大学,2017. [2] 李海玲,陈丽华,肖朝虎,等.微生物固定化载体材料的研究进展[J].现代化工,2020,40(8):58-61,66. [3] 何延青,刘俊良,杨平,等.微生物固定化技术与载体结构的研究[J].环境科学,2004(增刊1):101-104. [4] WANG J Y,VERSTRAETE N D B. Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete[J]. Journal of Industrial Microbiology & Biotechnology, 2012,39(4):567-577. [5] WIKTOR V, JONKERS H M. Quantification of crack-healing in novel bacteria-based self-healing concrete[J]. Cement and Concrete Composites,2011,33(7):763-770. [6] 冯涛,张家广,李珠,等.基于微生物矿化沉积的裂缝自修复混凝土微观及物相分析[J].新型建筑材料,2017,44(6):1-4,19. [7] 冯涛. 基于膨胀珍珠岩固载微生物的混凝土裂缝抗渗水性能及自修复机理分析[D].太原:太原理工大学,2018. [8] 周梦君. 基于膨胀珍珠岩固载微生物的混凝土裂缝宽度修复及基本力学性能初探[D]. 太原:太原理工大学,2018. [9] 王柏顺,张家广,周梦君,等.基于膨胀珍珠岩固载微生物的裂缝自修复混凝土劈裂抗拉强度试验研究[J].混凝土,2020(3):20-23,28. [10] 王文花,李珠,张家广,等.微生物矿化修复混凝土裂缝抗渗水性能试验研究[J].混凝土,2020(3):29-32. [11] 钮政,李珠,张家广,等.载体包裹材料对微生物矿化修复混凝土裂缝效果的影响[J].新型建筑材料,2019,46(6):14-18. [12] 潘庆峰. 混凝土裂缝的微生物自修复机理及自修复剂研究[D].南京:东南大学,2012. [13] 王瑞兴,钱春香.琼脂固载微生物矿化修复水泥基材料表面缺陷[J].建筑材料学报,2013,16(6):942-948. [14] 徐晶,王彬彬.陶粒负载微生物的混凝土开裂自修复研究[J].材料导报,2017,31(14):127-131. [15] 徐晶,王先志.低碱胶凝材料负载微生物应用于混凝土的开裂自修复[J].清华大学学报(自然科学版),2019,59(8):601-606. [16] 徐晶,王先志.浸渍及固载法用于混凝土微生物表面处理对比研究[J].材料导报,2018,32(24):4276-4280. [17] 吴林玉,缪林昌,孙潇昊,等.基于火山石负载细菌的混凝土裂缝修复分析[J].东南大学学报(自然科学版),2019,49(6):1171-1177. [18] 罗顺,刘冰,张金龙,等.混凝土自修复菌Bacillus sp.芽孢生产和萌发条件的优化[J].深圳大学学报(理工版),2020,37(1):25-32. [19] 余克服.珊瑚礁科学概论[M].北京:科学出版社,2018. [20] 中华人民共和国国家质量监督检验检疫总局. 轻集料及其试验方法第2部分:轻集料试验方法:GB/T 17431.2-2010[S].北京:中华人民共和国国家质量监督检验检疫总局,2010. [21] 中华人民共和国交通部.公路工程集料试验规程:JTG E42-2005[S].北京:人民交通出版社股份有限公司,2016. [22] 孙宏友. 基于正交试验法的透水混凝土配合比设计和试验研究[D].成都:西南交通大学,2016. [23] 练继建,高毛毛,闫玥,等.基于MICP技术的自修复混凝土研究进展[J].南水北调与水利科技,2019,17(1):164-177. [24] 钮政. 微生物矿化制备膨胀珍珠岩保温砂浆性能试验及微观分析[D]. 太原:太原理工大学,2020. [25] 郝小虎. 微生物矿化增强膨胀珍珠岩保温板性能试验研究及机理分析[D]. 太原:太原理工大学,2019. [26] 王绪民,王铖,崔芮.微生物在不同营养盐环境下矿化产物研究[J].工业建筑,2019,49(10):208-212. [27] 姜鲁. 基于好氧-厌氧二元微生物矿化体系的自修复混凝土性能研究[D]. 太原:太原理工大学,2020. [28] 王欣. 微生物水泥胶结砂体的界面及其对性能的影响[D].南京:东南大学,2015. [29] 孙道胜,许婉钰,刘开伟,等.MICP在建筑领域中的应用进展[J].材料导报,2021,35(11):11084-11091.
点击查看大图
计量
- 文章访问数: 91
- HTML全文浏览量: 10
- PDF下载量: 0
- 被引次数: 0