中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢纤维混凝土梁抗剪强度的集成学习预测方法

狄春锋

狄春锋. 钢纤维混凝土梁抗剪强度的集成学习预测方法[J]. 工业建筑, 2023, 53(11): 139-144. doi: 10.13204/j.gyjzG21112303
引用本文: 狄春锋. 钢纤维混凝土梁抗剪强度的集成学习预测方法[J]. 工业建筑, 2023, 53(11): 139-144. doi: 10.13204/j.gyjzG21112303
DI Chunfeng. An Ensemble Learning Prediction Method for Shear Strength of Steel Fiber Reinforced Concrete Beams[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 139-144. doi: 10.13204/j.gyjzG21112303
Citation: DI Chunfeng. An Ensemble Learning Prediction Method for Shear Strength of Steel Fiber Reinforced Concrete Beams[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 139-144. doi: 10.13204/j.gyjzG21112303

钢纤维混凝土梁抗剪强度的集成学习预测方法

doi: 10.13204/j.gyjzG21112303
基金项目: 

海南省科技厅重点研发项目(ZDYF2022SHFZ337)。

详细信息
    作者简介:

    狄春锋,男,1978年出生,高级工程师。电子信箱:459916706@qq.com

An Ensemble Learning Prediction Method for Shear Strength of Steel Fiber Reinforced Concrete Beams

  • 摘要: 传统经验方法预测钢纤维混凝土梁的抗剪强度多基于有限的数据且难处理强非线性问题,因此难以有效快速地预测抗剪强度。为此,开发了一种基于集成学习的钢纤维混凝土梁的抗剪强度预测方法,数据包含来源于文献的330组梁。输入参数包含梁的有效尺寸、纵向配筋率、混凝土抗压强度、骨料尺寸、剪跨比、钢纤维系数及抗拉强度。首先对数据集进行热力图与相关系数分析,得到各输入参数之间几乎无冗余,均可作为有效输入参数进行建模,并得到了输入与输出参数之间的线性关系程度;然后将数据集分割为测试集和训练集,分别用于不同的集成学习模型进行计算并记录运行过程;最后将结果与传统回归方法进行比较。结果表明,集成学习中GradientBoost算法预测抗剪性能的准确度最高,达到了0.950,比传统回归方法的平均准确度要高,证明该预测方法可用于抗剪性能预测。
  • [1] SHATNAWI A, ALKASSAR H M, AL-ABDALY N M, et al. Shear strength prediction of slender steel fiber reinforced concrete beams using a gradient boosting regression tree method[J]. Buildings, 2022, 12(5):550-550.
    [2] LEE S, LEE C. Prediction of shear strength of FRP-reinforced concrete flexural members without stirrups using artificial neural networks[J]. Engineering Structures, 2014, 61:99-112.
    [3] WANG Q, SONG H L, LU C L,et al. Shear performance of reinforced ultra-high performance concrete rectangular section beams[J]. Structures, 2020, 27:1184-1194.
    [4] NADERPOUR H, ALAVI S A. A proposed model to estimate shear contribution of FRP in strengthened RC beams in terms of Adaptive Neuro-Fuzzy Inference System[J]. Composite Structures, 2017, 170:215-227.
    [5] CAMPIONE G, CANNELLA F, CAVALERI L. Shear and flexural strength prediction of corroded R.C. beams[J]. Construction and Building Materials, 2017, 149:395-405.
    [6] CAMPIONE G, CANNELLA F. Engineering failure analysis of corroded R.C. beams in flexure and shear[J]. Engineering Failure Analysis, 2018, 86:100-114.
    [7] 鲍跃全,李惠.人工智能时代的土木工程[J].土木工程学报, 2019, 52(5):1-11.
    [8] ÇEVIK A, KURTOĞLU A E, BILGEHAN M, et al. Support vector machines in structural engineering:a review[J]. Journal of Civil Engineering and Management, 2015, 21:261-281.
    [9] BASHIR R, ASHOUR A. Neural network modelling for shear strength of concrete members reinforced with FRP bars[J]. Composites Part B:Engineering, 2012, 43:3198-3207.
    [10] JALAL M, RAMEZANIANPOUR A A. Strength enhancement modeling of concrete cylinders confined with CFRP composites using artificial neural networks[J]. Composites Part B:Engineering, 2012, 43:2990-3000.
    [11] YASEEN Z M, TRAN M T, KIM S, et al. Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models:a new approach[J]. Engineering Structures, 2018, 177:244-255.
    [12] ZHAO J, NGUYEN H, NGUYEN-THOI T, et al. Improved Levenberg-Marquardt backpropagation neural network by particle swarm and whale optimization algorithms to predict the deflection of RC beams[EB/OL]. Engineering with Computers, 2021[2023-10-20]. https://link.springer.com/article/10.1007/s00366-020-01267-6.
    [13] CHEN H, DENG T, DU T, et al. An RF and LSSVM-NSGA-II method for the multi-objective optimization of high-performance concrete durability[EB/OL]. Cement and Concrete Composites, 2022[2023-10-20]. https://www.sciencedirect.com/science/article/abs/pii/S0958946522000427.
    [14] CHEN N, ZHAO S, GAO Z,et al. Virtual mix design:Prediction of compressive strength of concrete with industrial wastes using deep data augmentation[EB/OL]. Construction and Building Materials, 2022[2023-10-20]. https://www.sciencedirect.com/science/article/abs/pii/S0950061822002720.
    [15] GONG H, SUN Y, DONG Y, et al. An efficient and robust method for predicting asphalt concrete dynamic modulus[J]. International Journal of Pavement Engineering, 2022, 23(8):2565-2576.
    [16] 胡旭东,张起森,范勇军.HMA动态模量Witczak和Hirsch预测模型[J].中外公路, 2003, 26(6):204-207.
    [17] HUANG H, BURTON H. Classification of in-plane failure modes for reinforced concrete frames with infills using machine learning[EB/OL]. Journal of Building Engineering, 2019[2023-10-20]. https://www.sciencedirect.com/science/article/abs/pii/S2352710218313652.
    [18] ASTERIS P G, SKENTOU A D, BARDHAN A, et al. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models[EB/OL]. Cement and Concrete Research, 2021[2023-10-20]. https://www.sciencedirect.com/science/article/abs/pii/S0008884621000983.
  • 加载中
计量
  • 文章访问数:  84
  • HTML全文浏览量:  12
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23

目录

    /

    返回文章
    返回