Numerical Simulation on Uplift Performance of Hooped Joint of PHC Pipe Pile
-
摘要: 预应力高强混凝土(PHC)管桩具有抗震性能好、单桩承载力大等优点,广泛应用于基础工程中。桩-桩接头的抗拔性能是接桩时需要考虑的关键问题之一。采用ABAQUS有限元软件建立抱箍式桩桩连接接头计算模型,对抱箍式桩-桩接头的抗拔受力机理进行了探究,考察了抱箍卡边缘宽度、径向厚度和端板厚度等参数对应力分布、抗拔承载力的影响。计算结果表明:U型抱箍卡的尺寸对节点的受拉破坏模式有一定影响;在加载至上拔设计荷载时,随着抱箍卡尺寸的增加,模型抱箍卡、端板和预应力筋的最大应力减小;随端板厚度增加,抱箍卡和端板最大应力减小,而预应力筋最大应力增加。Abstract: PHC pipe pile has been widely used in foundation engineering due to its high seismic performance and large bearing capacity of single pile. The uplift resistance of pile-pile joints is one of the key issues to be considered when connecting piles. ABAQUS finite element software was used to establish the calculation model of the hooped joint of PHC pipe pile, and the mechanical mechanism of the joint was studied. The effects of the edge width, radial thickness and plate thickness on the stress distribution and the tensile capacity of hooped pile were investigated. The calculation results showed that the size of the U-shaped hoop had a certain influence on the failure mode of the joint under tension. When the load reaches the design load, the model’s maximum stress of the hoop, plate and prestressed reinforcement decreased with the increase of hoop size. With the increase of plate thickness, the maximum stress of hooped clamp and end plate decreased, while the maximum stress of prestressed tendon increased.
-
Key words:
- PHC pipe pile /
- uplift performance /
- finite element analysis /
- parameter analysis
-
[1] 邓友生, 孙宝俊, 邬忠强. 预应力混凝土管桩的应用研究及发展前景[J]. 建筑技术, 2003(4):263-266. [2] 周万清, 蔡健, 林奕禧, 等. 深厚软土地基细长PHC管桩水平荷载试验研究[J]. 华南理工大学学报(自然科学版), 2007(7):131-136. [3] 邢皓枫, 赵红崴, 叶观宝, 等. PHC管桩工程特性分析[J]. 岩土工程学报, 2009, 31(1):36-39. [4] 阮起楠. 地震区预应力混凝土管桩设计探讨[J]. 混凝土与水泥制品, 2000(4):23-28. [5] 朱合华, 谢永健, 王怀忠. 上海软土地基超长打入PHC桩工程性状研究[J]. 岩土工程学报, 2004(6):745-749. [6] 李国维, 边圣川, 陆晓岑, 等. 软基路堤拓宽静压PHC管桩挤土效应现场试验[J]. 岩土力学, 2013, 34(4):1089-1096. [7] 高文生, 刘金砺, 赵晓光, 等. 关于预应力混凝土管桩工程应用中的几点认识[J]. 岩土力学, 2015, 36(增刊2):610-616. [8] 沈琳, 蔡红明, 曾超峰, 等. PHC管桩抗弯承载力研究[J].建筑结构,2018,48(增刊2):845-849. [9] 宋永生,陶文成,杨博,等.局部加强型预应力管桩抗弯试验与设计计算方法研究[J].建筑结构,2017,47(9):80-84. [10] 曾庆响, 梁焕华, 肖芝兰, 等. PHC管桩的开裂弯矩和极限弯矩计算[J]. 工业建筑, 2010, 40(1):68-72. [11] 吕铎, 刘佳龙, 郭昭胜, 等. PHC管桩拉-剪承载性能数值分析[J]. 混凝土与水泥制品, 2020(12):30-35. [12] 吴锋, 许耀金, 张洁, 等. PHC管桩抗剪试验研究[J]. 水运工程, 2020(3):129-135. [13] 崔川. 混合配筋PHC管桩抗剪承载力模拟分析[J]. 建筑结构, 2019, 49(增刊1):806-810. [14] NAGUE T, HAYASHI S. Earthquake-resistant property of prefabricated high-strength concrete pile, high performance materials in bridges[C]//Proceedings of the Interenetional Conference. 2003:73-182. [15] 赵长春, 张留军, 龚维明, 等. 预应力高强混凝土管桩抗震能力改善措施的试验研究[J]. 工业建筑, 2021, 51(1):131-134. [16] 王铁成, 王文进, 赵海龙, 等. 不同高强预应力管桩抗震性能的试验对比[J]. 工业建筑, 2014, 44(7):84-89. [17] 戎贤, 徐晓哲, 李艳艳. 预应力高强混凝土管桩抗震性能试验研究[J]. 工业建筑, 2013, 43(7):72-75. [18] DING X M, ZHANG T,LI P.A theoretical analysis of the bearing performance of vertically loaded large-diameter pipe pile groups[J]. Journal of Ocean University of China, 2016, 15(1):57-68. [19] ALAWNEH A S, NUSIER O K, AL-KATEEB M. Dependency of unit shaft resistance on in-situ stress:observations derived from collected field data[J]. Geotechnical and Geological Engineering, 2003, 21(1):29-46. [20] 李伟兴, 万月荣, 刘庆斌. 世博会主题馆抗拔PHC管桩新型连接的计算分析及试验研究[J]. 建筑结构学报, 2010, 31(5):86-94. [21] 张勇, 梁津. 新型U型管桩接头的开发和研制[J]. 混凝土, 2007(9):83-85. [22] 郭杨,崔伟,陈芳斌,等.一种抱箍式连接PHC抗拔管桩的计算分析和试验研究[J].岩土工程学报,2013,35(增刊2):1007-1010. [23] 王丽莉,林东.PHC桩碗形端头优化和应用[J].中国水运,2019,19(7):257-258. [24] 刘中青. PHC管桩抱箍式和机械啮合式桩-桩连接接头抗拔承载性能有限元分析研究[D].太原:太原理工大学,2020. [25] 刘伟扬. 弹卡式连接预应力混凝土方桩接头耐久性能研究[D].杭州:浙江大学,2021. [26] 江苏省建设厅. 先张法预应力混凝土抗拔管桩(一)抱箍式连接:GT 21-2011[S]. 杭州:凤凰科学技术出版社, 2011. [27] 中华人民共和国住房和城乡建设部. 预应力混凝土管桩:10G409[S]. 北京:中国计划出版社, 2010.
点击查看大图
计量
- 文章访问数: 252
- HTML全文浏览量: 39
- PDF下载量: 5
- 被引次数: 0