Analysis of Stability Bearing Capacity of Framework with Cuplok Brackets Under the Condition of Ground Frost Heave
-
摘要: 碗扣式模板支架作为施工临时钢结构,工程中经常忽略了支架地基处理的重要性,由于温度降低及土体含水量较多等多种因素引起土体冻胀现象,造成支架地基隆起,严重危害支架施工安全。为研究支架地基隆起下碗扣式支架的实际受力性能,基于多节间连续压杆理论分析架体高度与允许隆起位移的关系,通过采用ABAQUS建立碗扣式支架模型,对支架地基隆起影响下碗扣式模板支架受力性能进行分析。研究结果表明:支架地基隆起后,碗扣式支架稳定承载力下降最大达57.92%,为单杆失稳破坏;失稳破坏时,支架稳定承载力与立杆隆起根数相关性较小,与隆起处立杆的自身刚度相关性较大;角部立杆基底地基隆起下允许隆起位移最小,中部立杆基底地基隆起下允许隆起位移最大;立杆的允许隆起位移随架体高度的增加而增大。Abstract: As a temporary steel structure in construction, the importance of treatment for the foundation of framework is often neglected in engineering. Due to many factors such as the decrease of temperature and the high moisture content of soil, the foundation of framework is prone to heave which seriously endangers the construction safety of supporting frame. In order to study the actual mechanical properties of framework with cuplok brackets on the heave foundation, the relations between the height of framework and the allowable heave displacement was analyzed based on the theory of multi-segment continuous compression bars, and the model of framework with cuplok brackets was established with ABAQUS. The results showed that the stability bearing capacity of the framework decreased up to 57.92% after the foundation was heaved, which was the instability failure of a single rod; when failure occurred, the stability bearing capacity of the framework was less related to the number of heave members than to the stiffness of the heave members; the allowable heave displacement was the smallest under the condition of heave of upright rods at foundation corner while the allowable heave displacement was the maximum under the condition of heave of upright rods at the middle of foundation; the allowable heave displacement of the uprighty rods increased with the height of the framework.
-
[1] 董三升,孙延林,孙秋月. 不同步距及斜撑布置对碗扣式钢管支架性能影响研究[J]. 四川建筑科学研究,2019,45(3):64-70. [2] 沈杰. 碗扣式满堂支架有限元建模及稳定性分析[D].武汉:华中科技大学,2019. [3] 褚旭阳. 哈尔滨地铁3号线兆麟公园站围护结构与基坑冻胀分析[D]. 北京:北京交通大学,2018. [4] 周康喆. 碗扣式钢管模板支架承载力试验与分析[D]. 天津:天津大学,2010. [5] 冉涛,李俊德,魏治国,等. 基于规模因素的高大满堂支架结构稳定性的研究[J]. 公路,2020,65(10):151-155. [6] 中华人民共和国住房和城乡建设部. 建筑施工碗扣式钢管脚手架安全技术规范:JGJ 166-2016[S]. 北京:中国建筑工业出版社,2017. [7] 方诗圣,张春凤,田凯,等. 基于半刚性碗扣式模板支撑体系的承载力分析[J]. 水利与建筑工程学报,2016,14(6):35-39. [8] 张晓静. 箱梁翼缘下模板支架受力性能试验研究[D]. 郑州:郑州大学,2014. [9] 孙秋月. 碗扣式钢管满堂支架力学性能及稳定性试验研究[D]. 西安:长安大学,2018. [10] 邹阿鸣,李全旺,何铭华,等. 基于三折线半刚性节点模型的碗扣式脚手架受力性能有限元分析[J]. 建筑结构学报,2016,37(4):151-157. [11] 王文倩. 碗扣式钢管脚手架节点抗弯性能研究[D].西安:长安大学,2018. [12] 钱晓军. 盘扣式及碗扣式钢管支架节点试验及应用技术研究[D]. 南京:东南大学,2016. [13] CHANDRANGSU T, RASMUSSEN K. Structural modelling of support scaffold systems[J]. Journal of Constructional Steel Research,2011,67(5):866-875. [14] ZHANG L Y, WANG C Y, SONG G B, et al. Health status monitoring of cuplock scaffold joint connection based on wavelet packet analysis[J]. Shock and Vibration,2015(7):1-7. [15] 杜宏伟,程赫明,李建云,等. 支模架节点半刚性性能对比研究[J]. 昆明理工大学学报(自然科学版),2017,42(3):108-112. [16] CHAN S L, HUANG H Y, FANG L X. Advanced analysis of imperfect portal frames with semirigid base connections[J]. Journal of Engineering Mechanics,2005,131(6):633-640. [17] 盛岱超,张升,贺佐跃. 土体冻胀敏感性评价[J]. 岩石力学与工程学报,2014,33(3):594-605. [18] 陈骥. 钢结构稳定理论与设计[M]. 5版. 北京:科学出版社,2011:533-535. [19] 张春凤,方诗圣,石程华,等. 碗扣式满堂支架整体稳定性分析[J]. 合肥工业大学学报(自然科学版),2018,41(5):666-670.
点击查看大图
计量
- 文章访问数: 106
- HTML全文浏览量: 26
- PDF下载量: 0
- 被引次数: 0