Durability of Functionally Gradient Concrete Based on Alkali Activated Slag and Portland Cement
-
摘要: 基于NaOH激发矿渣(NAS)和硅酸盐水泥(PC)配制了功能梯度混凝土(FGC),然后对其抗碳化和抗氯离子渗透性能进行了研究。用压汞法、热分析法和X射线衍射法(XRD)对NAS砂浆(或净浆)和PC砂浆(或净浆)进行了分析。结果表明:NAS有极好的抗氯离子渗透性能但抗碳化性能差,PC抗碳化性能好但抗氯离子渗透性能差;NAS混凝土表面的PC砂浆层能显著提高FGC的抗碳化性能,PC混凝土表面的NAS砂浆层能显著提高FGC抗氯离子渗透性能。Abstract: The durability of concrete can be improved by using functional gradient structure. Functionally gradient concrete (FGC) was prepared with NaOH activated slag (NAS) and Portland cement (PC). Then the carbonation resistance and chloride ion permeability resistance of FGC were studied. At the same time, NAS mortar (or NAS paste) and PC mortar (or PC paste) were analyzed by mercury injection method, thermal analysis and X-ray diffraction(XRD). The results showed that NAS had excellent resistance to chloride ion penetration but poor resistance to carbonation, and PC had good resistance to carbonation but poor resistance to chloride ion penetration. The PC mortar layer on the surface of NAS concrete could significantly improve the carbonation resistance of FGC, and the NAS mortar layer on the surface of PC concrete could significantly improve the chloride ion penetration resistance of FGC.
-
[1] XIAO D W, JIAN L T, WEI Z G. Durability protection of the functionally graded structure concrete in the splash zone[J]. Construction and Building Materials,2013,41:246-251. [2] 杨久俊,徐鹏,海然,等.界面区组分对层状水泥基材料力学行为的影响[J].建筑材料学报,2004,7(3):323-327. [3] DIAS C M R,SAVASTANO J H,JOHN V M. Exploring the potential of functionally graded materials concept for the development of fiber cement[J]. Construction and Building Materials,2010,24:140-146. [4] CAO Y Y Y,LI P P, BROUWERS H J H,et al. Enhancing flexural performance of ultra high performance concrete by an optimized layered structure concept[J]. Composites:Part B,2019,171:154-165. [5] 王信刚,马保国.地下工程混凝土的梯度功能设计与性能研究[J].中国矿业大学学报,2008,37(3):354-359. [6] 高英力,马保国,王信刚,等.盾构隧道功能梯度混凝土管片的研发及性能研究[J].岩石力学与工程学报,2007,26(11):2341-2347. [7] 夏江南,王海伟,邹本辉.池州长江公路大桥主塔梯度功能混凝土施工关键技术[J].公路交通科技,2019(1):225-227. [8] 向佳瑜,袁吉童,冷政,等.基于梯度设计的地铁管片混凝土抗渗性能研究[J].混凝土与水泥制品,2017(10):14-17. [9] BAKHAREV T,SANJAYAN J G,CHENG Y B. Sulfate attack on alkali activated slag concrete[J]. Cement and Concrete Research,2002,32:211-216. [10] BAKHAREV T,SANJAYAN J G,CHENG Y B. Resistance of alkali activated slag concrete to acid attack[J]. Cement and Concrete Research,2003,33:1607-1611. [11] COLLINS F G,SANJAYAN J G. Workability and mechanical properties of alkali activated slag concrete[J]. Cement and Concrete Research,1999,29:455-458. [12] SAL O. Durability of concrete incorporating GGBS activated by water glass[J]. Construction and Building Material,2008,22:2059-2067. [13] BAKHAREV T,SANJUYANA J G. Resistance of alkali activated slag concrete to carbonation[J]. Cement and Concrete Research,2001,31:1277-1283. [14] 万小梅, 韩笑,于琦,等. 碱激发矿渣净浆对氯离子的固化作用[J].建筑材料学报,2021,24(5):952-960. [15] 何 娟,何俊红,王宇斌. 碱矿渣水泥基胶凝材料的碳化特征研究[J]. 硅酸盐通报,2015,34(4):927-930. [16] 郑 昊,梁咏宁,詹建伟,等. MgO和CaO对碱矿渣混凝土抗碳化性能的影响[J]. 硅酸盐通报,2021,40(8):2564-2573. [17] BIRNIN Yauri U A, GLASSER F P. Friedel's salt, Ca2Al(OH)6(Cl,OH)·2H2O:its solid solutions and their role in chloride binding[J]. Cement and Concrete Research, 1998, 28:1713-1723. [18] THOMAS M D A, HOOTON R D, SCOTT A, et al. The effect of supplementary cementitious materials on chloride binding in hardened cement paste[J]. Cement and Concrete Research, 2012, 42:1-7. [19] HIRAO H, YAMADA K, TAKAHASHI H, et al. Chloride binding of cement estimated by binding isotherms of hydrates[J]. Journal of Advanced Concrete Technology, 2005, 3:77-84. [20] 勾密峰, 黄飞, 管学茂. 矿渣对氯离子的固化作用[J]. 材料导报, 2014, 28(10):120-122,144. [21] 万小梅, 刘国强, 赵铁军, 等. C-(A)-S-H 对氯离子的吸附性能研究[J]. 建筑材料学报, 2019, 22(1):31-37. [22] MANGAT P S, OLALEKAN O OJEDOKUN. Bound chloride ingress in alkali activated concrete[J]. Construction and Building Materials, 2019, 212:375-387. [23] MYERS R J, BERNAL S A, PROVIS J L. Phase diagrams for alkali activated slag binders[J]. Cement and Concrete Research, 2017,95:30-38. [24] YE H, RADLIN'SKA A. Quantitative analysis of phase assemblage and chemical shrinkage of alkali activated slag[J]. Journal of Advanced Concrete Technology, 2016, 14:245-260. [25] YE H. Nanoscale attraction between calcium aluminosilicate hydrate and Mg-Al layered double hydroxides in alkali-activated slag[J]. Materials Characterization, 2018, 140:95-102. [26] KAYALI O, KHAN M, AHMED M. The role of hydrotalcite in chloride binding and corrosion protection in concretes with ground granulated blast furnace slag[J]. Cement and Concrete Composite, 2012, 34(8):936-945. [27] KAYALI O, AHMED M, KHAN M. Friedel's salt and hydrotalcite-layered double dydroxides and the protection against chloride induced corrosion[J]. Civil Environment Research, 2013(5):111-116. [28] BERNAL S A, PROVIS J L, WALKLEY B, et al. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation[J]. Cement and Concrete Research, 2013, 53:127-144. [29] RAHMAN A A, GLASSER F P. Comparative studies of the carbonation of hydrated cements[J]. Advances in Cement Research, 1989, 2(6):49-54. [30] HAWON S, SEUNG J K. Permeability characteristics of carbonated concrete considering capillary pore structure[J].Cement and Concrete Research,2007,37(6):909-915. [31] CHEN J J, THOMAS J J, JENNINGS H M, Decalcification shrinkage of cement paste[J]. Cement and Concrete Research,2006,36(5):801-809.
点击查看大图
计量
- 文章访问数: 96
- HTML全文浏览量: 9
- PDF下载量: 2
- 被引次数: 0