中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于碱激发矿渣和硅酸盐水泥的功能梯度混凝土的耐久性

周万良 邓欢

周万良, 邓欢. 基于碱激发矿渣和硅酸盐水泥的功能梯度混凝土的耐久性[J]. 工业建筑, 2022, 52(6): 162-166,113. doi: 10.13204/j.gyjzG21102005
引用本文: 周万良, 邓欢. 基于碱激发矿渣和硅酸盐水泥的功能梯度混凝土的耐久性[J]. 工业建筑, 2022, 52(6): 162-166,113. doi: 10.13204/j.gyjzG21102005
ZHOU Wanliang, DENG Huan. Durability of Functionally Gradient Concrete Based on Alkali Activated Slag and Portland Cement[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 162-166,113. doi: 10.13204/j.gyjzG21102005
Citation: ZHOU Wanliang, DENG Huan. Durability of Functionally Gradient Concrete Based on Alkali Activated Slag and Portland Cement[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 162-166,113. doi: 10.13204/j.gyjzG21102005

基于碱激发矿渣和硅酸盐水泥的功能梯度混凝土的耐久性

doi: 10.13204/j.gyjzG21102005
基金项目: 

合肥工业大学大学生创新创业项目(201910359035)。

详细信息
    作者简介:

    周万良,男,1970年出生,博士,副教授。电子信箱:zhouwanliang@sohu.com

Durability of Functionally Gradient Concrete Based on Alkali Activated Slag and Portland Cement

  • 摘要: 基于NaOH激发矿渣(NAS)和硅酸盐水泥(PC)配制了功能梯度混凝土(FGC),然后对其抗碳化和抗氯离子渗透性能进行了研究。用压汞法、热分析法和X射线衍射法(XRD)对NAS砂浆(或净浆)和PC砂浆(或净浆)进行了分析。结果表明:NAS有极好的抗氯离子渗透性能但抗碳化性能差,PC抗碳化性能好但抗氯离子渗透性能差;NAS混凝土表面的PC砂浆层能显著提高FGC的抗碳化性能,PC混凝土表面的NAS砂浆层能显著提高FGC抗氯离子渗透性能。
  • [1] XIAO D W, JIAN L T, WEI Z G. Durability protection of the functionally graded structure concrete in the splash zone[J]. Construction and Building Materials,2013,41:246-251.
    [2] 杨久俊,徐鹏,海然,等.界面区组分对层状水泥基材料力学行为的影响[J].建筑材料学报,2004,7(3):323-327.
    [3] DIAS C M R,SAVASTANO J H,JOHN V M. Exploring the potential of functionally graded materials concept for the development of fiber cement[J]. Construction and Building Materials,2010,24:140-146.
    [4] CAO Y Y Y,LI P P, BROUWERS H J H,et al. Enhancing flexural performance of ultra high performance concrete by an optimized layered structure concept[J]. Composites:Part B,2019,171:154-165.
    [5] 王信刚,马保国.地下工程混凝土的梯度功能设计与性能研究[J].中国矿业大学学报,2008,37(3):354-359.
    [6] 高英力,马保国,王信刚,等.盾构隧道功能梯度混凝土管片的研发及性能研究[J].岩石力学与工程学报,2007,26(11):2341-2347.
    [7] 夏江南,王海伟,邹本辉.池州长江公路大桥主塔梯度功能混凝土施工关键技术[J].公路交通科技,2019(1):225-227.
    [8] 向佳瑜,袁吉童,冷政,等.基于梯度设计的地铁管片混凝土抗渗性能研究[J].混凝土与水泥制品,2017(10):14-17.
    [9] BAKHAREV T,SANJAYAN J G,CHENG Y B. Sulfate attack on alkali activated slag concrete[J]. Cement and Concrete Research,2002,32:211-216.
    [10] BAKHAREV T,SANJAYAN J G,CHENG Y B. Resistance of alkali activated slag concrete to acid attack[J]. Cement and Concrete Research,2003,33:1607-1611.
    [11] COLLINS F G,SANJAYAN J G. Workability and mechanical properties of alkali activated slag concrete[J]. Cement and Concrete Research,1999,29:455-458.
    [12] SAL O. Durability of concrete incorporating GGBS activated by water glass[J]. Construction and Building Material,2008,22:2059-2067.
    [13] BAKHAREV T,SANJUYANA J G. Resistance of alkali activated slag concrete to carbonation[J]. Cement and Concrete Research,2001,31:1277-1283.
    [14] 万小梅, 韩笑,于琦,等. 碱激发矿渣净浆对氯离子的固化作用[J].建筑材料学报,2021,24(5):952-960.
    [15] 何 娟,何俊红,王宇斌. 碱矿渣水泥基胶凝材料的碳化特征研究[J]. 硅酸盐通报,2015,34(4):927-930.
    [16] 郑 昊,梁咏宁,詹建伟,等. MgO和CaO对碱矿渣混凝土抗碳化性能的影响[J]. 硅酸盐通报,2021,40(8):2564-2573.
    [17] BIRNIN Yauri U A, GLASSER F P. Friedel's salt, Ca2Al(OH)6(Cl,OH)·2H2O:its solid solutions and their role in chloride binding[J]. Cement and Concrete Research, 1998, 28:1713-1723.
    [18] THOMAS M D A, HOOTON R D, SCOTT A, et al. The effect of supplementary cementitious materials on chloride binding in hardened cement paste[J]. Cement and Concrete Research, 2012, 42:1-7.
    [19] HIRAO H, YAMADA K, TAKAHASHI H, et al. Chloride binding of cement estimated by binding isotherms of hydrates[J]. Journal of Advanced Concrete Technology, 2005, 3:77-84.
    [20] 勾密峰, 黄飞, 管学茂. 矿渣对氯离子的固化作用[J]. 材料导报, 2014, 28(10):120-122

    ,144.
    [21] 万小梅, 刘国强, 赵铁军, 等. C-(A)-S-H 对氯离子的吸附性能研究[J]. 建筑材料学报, 2019, 22(1):31-37.
    [22] MANGAT P S, OLALEKAN O OJEDOKUN. Bound chloride ingress in alkali activated concrete[J]. Construction and Building Materials, 2019, 212:375-387.
    [23] MYERS R J, BERNAL S A, PROVIS J L. Phase diagrams for alkali activated slag binders[J]. Cement and Concrete Research, 2017,95:30-38.
    [24] YE H, RADLIN'SKA A. Quantitative analysis of phase assemblage and chemical shrinkage of alkali activated slag[J]. Journal of Advanced Concrete Technology, 2016, 14:245-260.
    [25] YE H. Nanoscale attraction between calcium aluminosilicate hydrate and Mg-Al layered double hydroxides in alkali-activated slag[J]. Materials Characterization, 2018, 140:95-102.
    [26] KAYALI O, KHAN M, AHMED M. The role of hydrotalcite in chloride binding and corrosion protection in concretes with ground granulated blast furnace slag[J]. Cement and Concrete Composite, 2012, 34(8):936-945.
    [27] KAYALI O, AHMED M, KHAN M. Friedel's salt and hydrotalcite-layered double dydroxides and the protection against chloride induced corrosion[J]. Civil Environment Research, 2013(5):111-116.
    [28] BERNAL S A, PROVIS J L, WALKLEY B, et al. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation[J]. Cement and Concrete Research, 2013, 53:127-144.
    [29] RAHMAN A A, GLASSER F P. Comparative studies of the carbonation of hydrated cements[J]. Advances in Cement Research, 1989, 2(6):49-54.
    [30] HAWON S, SEUNG J K. Permeability characteristics of carbonated concrete considering capillary pore structure[J].Cement and Concrete Research,2007,37(6):909-915.
    [31] CHEN J J, THOMAS J J, JENNINGS H M, Decalcification shrinkage of cement paste[J]. Cement and Concrete Research,2006,36(5):801-809.
  • 加载中
计量
  • 文章访问数:  96
  • HTML全文浏览量:  9
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 网络出版日期:  2022-09-05

目录

    /

    返回文章
    返回