Wind Tunnel Test Study on Crane Structure with Double-Flat-Arm Derrick for Long-Span Transmission Towers
-
摘要: 国家大跨越输电线路建设方兴未艾,这些新建的长距离电力输送通道档距大且铁塔高,同时面临恶劣环境的严峻挑战。在大跨越超高输电铁塔的施工中,双平臂抱杆是最重要的吊装施工装备。在施工期内高空作业的双平臂抱杆面临复杂的风环境,高长细比的柔性结构特征也对其抗风安全提出了更高的要求。针对组立江阴长江大跨越385 m高塔的双平臂抱杆,开展了高频天平测力风洞试验研究。在多个来流风向角下,针对各个抱杆构件的多种工作姿态完成了高频天平测力试验。由风洞试验可知:抱杆标准节整体体型系数在各风向角下的变化存在线性规律;抱杆整体结构体型系数的规范取值会偏于风险,应在抱杆结构抗风验算中予以重视。同时,还提出了基于构件总计法的抱杆标准节风荷载精细化计算方法。Abstract: The construction of long-span power transmission lines in China is booming. These transmission lines run through large distances with high-rise towers, and are facing severe challenges from harsh environments. For construction of long-span and ultra high-rise transmission towers, the crane structure with double-flat-arm derrick has become the most important lifting equipment. During the construction process, the crane operates has to face the complex and extreme wind environment. The crane structure with a large slenderness ratio is quite wind-sensitive. Wind tunnel tests were carried out for the double-flat-arm derrick for erecting the 385 m high tower crossing the Yangtze River in Jiangyin. High-frequency force-balance wind tunnel tests were conducted for different working positions of flat arms under various incoming wind angles. The obtained shape coefficients of the standard tower body segment exihibited a linear relation with the incoming wind angles. It was also found that the overall shape coefficients of the crane structure obtained by the code might be risky, and should be paid more attention to the wind resistance calculation of the derrick structure. A refined wind loading calculation formula was proposed based on the member assembly method.
-
Key words:
- crane structure /
- ultra high-rise tower /
- wind tunnel test /
- shape coefficient /
- member assembly method
-
[1] 熊织明, 钮永华, 邵丽东. 500 kV 江阴长江大跨越工程施工关键技术[J]. 电网技术, 2006, 30(1):28-34. [2] 熊织明, 邵丽东, 吴建宏, 等. 346.5 m输电高塔施工技术[J]. 特种结构, 2004, 21(3):18-21. [3] 黄成云, 朱冠旻, 殷传仪. 特高压黄河大跨越铁塔塔头吊装[J]. 电力建设, 2008, 29(4):20-23. [4] 郑怀清, 熊织明, 王曦辰, 等. 1 000 kV交流特高压线路铁塔组立技术[J]. 电网技术, 2008, 32(20):15-19. [5] 周焕林, 张国富, 叶建云, 等. 舟山大跨越高塔抱杆型式试验方案[J]. 工程与建设, 2009, 23(1):44-46. [6] 徐城城, 叶建云, 周焕林. 双平臂抱杆的非线性有限元静力分析[J]. 电力建设, 2014, 35(8):97-100. [7] 吴凡, 史跃, 黄成云, 等. 双平臂抱杆与特高压输电线路塔耦合结构力学性能分析[J]. 钢结构, 2016, 31(3):59-61. [8] 叶何凯. 钢管塔施工过程双平臂抱杆风致响应及钢管涡振疲劳研究[D]. 杭州:浙江大学, 2019. [9] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009-2012[S]. 北京:中国建筑工业出版社, 2012. [10] 中华人民共和国住房和城乡建设部. 高耸结构设计标准:GB 50135-2019[S]. 北京:中国建筑工业出版社, 2019. [11] 中华人民共和国能源局. 架空送电线路杆塔结构设计技术规定:DL/T 5154-2012[S]. 北京:中国计划出版社,2012. [12] 叶建云, 金鹤翔, 周立宏, 等. 特大型座地双平臂电力抱杆的研制及应用[J]. 建筑机械化, 2020, 41(3):18-20. [13] 姚剑锋. 大跨越钢管塔的风荷载和风致响应研究[D].杭州:浙江大学, 2019. [14] JEC. Design standards on structures for transmissions:JEC-127-1979[S]. Tokyo:Japanese Electrotechnical Committee, 1979. [15] 楼文娟, 梁洪超, 卞荣. 基于杆件荷载的角钢输电塔风荷载体型系数计算[J]. 浙江大学学报(工学版), 2018, 52(9):1631-1637. [16] PRUD'HOMME S, LEGERON F, LANEVILLE A, et al. Wind forces on single and shielded angle members in lattice structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 124:20-28. [17] 赵夏双. 基于杆件荷载的钢管输电塔体型系数精细化计算方法研究[D]. 杭州:浙江大学, 2020.
点击查看大图
计量
- 文章访问数: 144
- HTML全文浏览量: 11
- PDF下载量: 10
- 被引次数: 0