Stress Transfer Models of Soil Arching and Their Differences of Patterns
-
摘要: 为研究土拱效应的演化过程以及土拱应力的传递规律,根据桩土静力平衡条件及抗剪强度准则建立土拱应力传递模型,并基于工程背景建立数值模型,通过控制等应力差方法比较三种应力云图中土拱的形态差异,并根据土拱应力传递模型对桩后荷载的传递规律进行分析。解析解表明:桩间竖向土拱和桩后水平土拱的法向应力均呈指数递减规律;不同应力云图中土拱形态不同,根据土拱效应随深度的演化过程,可分成四个区域进行研究;水平土拱效应随深度逐渐减弱,桩侧土拱及桩脚处应力随深度均增大并逐渐接近桩后应力;桩后土拱荷载传递系数随深度逐渐减小,桩侧土拱荷载传递系数随深度逐渐增大。Abstract: To study evolution processes of the soil arching effect and the stress transfer law of soil arching, according to equilibrium conditions of piles and soil and the shear strength criterion, a stress transfer model of soil arching was constructed. The numerical model was built based on the engineering background, and the pattern differences of soil arching in the three stress contours were compared by controlling the equal stress difference method, besides, in conformity to the stress transfer model of soil arching, the transfer law of loads behind piles was analyzed. The analytical solution showed that the normal stress of vertical soil arching between piles and horizontal soil arching behind piles decayed in the law of the exponential function. According to the evolution process of soil arching effect with depth, it could be divided into four zones to be analyzed. The horizontal soil arching effect decayed with depth, and the stress in the soil arching and pile tip increased with depth and was gradually an approximation to the stress behind piles. The load transfer coefficients of soil arching behind piles decreased with depth, and the load transfer coefficients of soil arching between piles increased with depth.
-
Key words:
- soil arching effect /
- contour /
- slope /
- stress transfer /
- numerical simulation
-
[1] 李登峰,赵晓彦,胡卸文,等.考虑土拱效应的边坡桩间土钉墙受力计算[J].中国公路学报,2018,31(5):1-8,33. [2] HANDY R L. The arch in soil arching[J]. Journal of Geotechnical Engineering,1985,111(3):302-318. [3] PAIK K H, SALGADO R. Estimation of active earth pressure against rigid retaining walls considering arching effect[J]. Géotechnique, 2003,53(7):643-645. [4] 吕庆,孙红月,尚岳全.抗滑桩桩后土拱形状及影响因素[J].哈尔滨工业大学学报, 2010,42(4):629-633. [5] 王军,曹平,刘杰,等.土体蠕变与桩锚耦合作用的土拱效应分析[J].自然灾害学报,2017,26(2):74-80. [6] 李怀鑫,林斌,王鹏.热力耦合作用对桩及桩间土拱效应的影响研究[J].中国安全生产科学技术,2020,16(8):143-148. [7] 陈强,杨泽平,梁海安,等.砂性土中土拱演变阶段及影响因素试验探究[J].公路,2018,63(12):58-64. [8] 王振强.悬臂式抗滑桩土拱效应的静力及动力特征研究[D].重庆:重庆大学,2014. [9] 易靖松,张世林,孙金辉,等.不同截面形态的空心抗滑桩支挡效果对比研究[J].水文地质工程地质,2018,45(5):121-128,135. [10] 杨涛,李航,陆振荣,等.简化土拱物理和数值模型在土拱形态研究上的适用性[J].工业建筑,2018,48(1):80-84. [11] 张建勋,陈福全,简洪钰.被动桩中土拱效应问题的数值分析[J].岩土力学,2004,25(2):174-178. [12] LI C D,WU J J,TANG H M,et al.A novel optimal plane arrangement of stabilizing piles based on soil arching effect and stability limit for 3D colluvial landslides[J]. Engineering Geology,2015,195:236-247. [13] 刘朝晖,王鑫.桩承式低填路堤土拱效应的数值模拟[J].深圳大学学报,2014,31(5):529-536. [14] SAADI R, BAHEDDI M, FERHOUNE N. Analytical approach of the arching dual effect describing the stability of slurry-wall trenches in cohesionless soil[J]. KSCE Journal of Civil Engineering, 2017,17(10):1-13. [15] 李兴明,晏鄂川,田庄,等.土拱应力递减模型及其在滑坡荷载分担模型中的应用[J].东北大学学报(自然科学版),2021,42(3):436-443. [16] 张玲,陈金海,赵明华.考虑土拱效应的悬臂式抗滑桩最大桩间距确定[J].岩土力学,2019,40(11):4497-4505. [17] 林斌,李怀鑫,范登政,等.悬臂式抗滑桩受力特性分析及桩间距计算[J].人民长江,2021,52(4):177-181. [18] 陈强,董桂城,王超,等.基于透明土技术的桩后土拱效应特征分析[J].西南交通大学学报,2020,55(3):509-517.
点击查看大图
计量
- 文章访问数: 146
- HTML全文浏览量: 24
- PDF下载量: 1
- 被引次数: 0