A Numerical Method for Eigenvalue Buckling Analysis of Grid Structures
-
摘要: 讨论和证明了网架结构特征值屈曲分析中的单元选用应采用多段梁单元。通过铰支受压杆和铰接桁架的稳定性分析,对比解析解与近似解,指出单元选择的关键在于合适的形函数。通过分别采用杆单元、不同形函数的不分段与分段的梁单元(多段梁单元)对单一网架结构和考虑下部框架的网架进行特征值屈曲分析,对比表明:采用杆单元对网架进行特征值屈曲分析时,其最低阶屈曲荷载系数过大;采用高阶形函数的梁单元若不分段,可以得出较为准确的屈曲荷载系数,但屈曲模态不能反映杆件屈曲;采用梁单元并考虑分段,可以求得较为准确的临界荷载,其屈曲模态合理,能够反映杆件屈曲。Abstract: It was discussed and proved that the element selection in eigenvalue buckling analysis of grid structure should adopt multi-section beam element. The stability of the hinged compression rod and the hinged truss was analyzed, and the analytical solution was compared with the approximate solution. It was pointed out that the key to element selection lies in the appropriate shape function. The eigenvalue buckling analysis of the single grid structure and the grid considering the lower frame was carried out by using the rod element, the non-segmented beam element and the segmented beam element (multi-segment beam element). Among them, the beam element considered different shape functions. The research showed that the lowest-order buckling load factor was too large for the eigenvalue buckling analysis of the grid frame using rod elements. However, if the beam element using higher-order shape functions was not segmented, a more accurate buckling load factor could be obtained, but the buckling mode could not reflect the member buckling. Using beam elements and considering segmentation, a more accurate critical load could be obtained, and its buckling mode could reflect the member buckling.
-
Key words:
- grid structure /
- stability /
- eigenvalue buckling analysis /
- member buckling /
- multi-segment beam element
-
[1] IZZUDDIN B A, EINASHAI S. Buckling and geometrically nonlinear analysis of frames using one element member[J]. Journal of Constructional Steel Research, 1995,32(2):227-230. [2] 范峰,严佳川,曹正罡.考虑杆件初弯曲的单层球面网壳稳定性能[J].东南大学学报(自然科学版),2009,39(增刊):158-164. [3] 严佳川,范峰,曹正罡.杆件初弯曲对网壳结构弹塑性稳定性能影响研究[J].建筑结构学报,2012,33(12):63-71. [4] 田伟,赵阳,董石麟.考虑杆件失稳的网壳结构稳定分析方法[J].工程力学,2012,29(10):149-156. [5] 范峰,严佳川,曹正罡.考虑杆件失稳影响的网壳结构稳定性研究[J].土木工程学报,2012,45(5):8-17. [6] 张成,吴慧,高博青.网架结构在地震下的失效模式及其数值表述[J].振动与冲击,2011,30(8):45-50. [7] CHAJES A.结构稳定性理论原理[M].唐家祥,译.兰州:甘肃人民出版社,1982. [8] 刘光栋,罗汉泉.杆系结构稳定[M].北京:人民交通出版社,1988. [9] 王新敏. ANSYS工程结构数值分析[M].北京:人民交通出版社,2007. [10] ANSYS, Inc. Theory manual[M].12th ed. Canonsburg:SAS IP, Inc.,2010. [11] 孙焕纯,王跃方.对桁架结构稳定分析经典理论的讨论[J].计算力学学报,2005(3):316-319. [12] 刘娟辉,乐风江.混合结构设计中钢平板支座的模拟[J].低温建筑技术,2016,38(5):108-111.
点击查看大图
计量
- 文章访问数: 108
- HTML全文浏览量: 9
- PDF下载量: 3
- 被引次数: 0