An Experiment and Its Numerical Simulation on Horizontal Freezing Effect in Water-Rich Fine Sand Layers
-
摘要: 通过开展富水粉细砂地层双管水平冻结室内模型试验,研究不同盐水温度(-20,-25,-30℃)对冻结壁厚度、冻结交圈时间、最终冻结温度以及冻结范围的影响,并建立了水平冻结数值模型,通过与实测数据的对照,验证了数值模型的正确性;而后进一步模拟双管冻结下初始环境温度、渗流速度、双管净距对冻结温度场的影响。研究结果表明:初始环境温度升高导致冻结壁厚度减小、推迟冻结时间,但对最终的冻结温度影响较小;地下水渗流将会使冻结温度场冷量向渗流区下方迁移,渗流区上方冻结壁厚度小于渗流区下方冻结壁厚度,渗流速度越大,厚度差越大;双管净距的增加将会使冻结壁厚度减小,冻结交圈时间大幅度延长,导致冻结温度升高。Abstract: In order to explore the effect of horizontal freezing in water-rich fine sand layers, an experimental model tests was conducted. The effects of different salt water temperatures (at -20 ℃, -25 ℃ and -30 ℃) on frozen wall thickness, time of closure for the frozen wall, final frozen temperatures and frozen ranges were studied. The numerical model of horizontal freezing was established. By comparsion with the measured data, the numerical model was verified. The effects of initial temperatures, seepage speeds and clear space between two freezing tubes on the frozen temperature field were further simulated. The results showed that increasing the initial environmental temperature would reduce the thickness of frozen walls and delay the time for closure of frozen walls, but has little influence on the final frozen temperature. Groundwater seepage would migrate the cooling energy down to the lower zone, which would make the frozen wall in the upper zone thinner than that in the lower zone. The greater the seepage speed, the more obvious the difference between them. To increase the clear space between the two freezing tubes would reduce the thickness of the frozen wall, greatly delay the time of closure for frozen walls and lead to the increase of final frozen temperature.
-
Key words:
- artificial freezing /
- freezing parameters /
- model test /
- numerical simulation /
- temperature field
-
[1] 张经双,吴金荣.人工冻结法在地铁隧道施工中的应用与发展[J].工程建设,2007,39(1):30-32. [2] 李大勇,吕爱钟,张庆贺,等.南京地铁旁通道冻结实测分析研究[J].岩石力学与工程学报,2004,23(2):334-338. [3] 段寅,荣传新,程桦,等.不同顶管组合方式的管幕冻结温度场模型试验[J].冰川冻土,2020,42(2):479-490. [4] 潘建立,高海东,史培新.拱北隧道暗挖段管幕组合方案优化研究[J].现代隧道技术,2015,52(3):55-62. [5] 周晓敏,王梦恕,张绪忠.渗流作用下地层冻结壁形成的模型试验研究[J].煤炭学报,2005(2):196-201. [6] 袁云辉,杨平,江天堑.复杂环境下浅埋暗挖隧道穿越薄富含水层冻结温度场研究[J].岩土力学,2010,31(增刊1):388-393. [7] 刘波,陈玉超,李东阳,等.复杂地层差异温度人工冻结试验与数值分析[J].岩石力学与工程学报,2013,32(增刊2):3328-3336. [8] 石荣剑,岳丰田,张勇,等.盾构地中对接冻结加固模型试验(Ⅰ):冻结过程中地层冻结温度场的分布特征[J].岩土力学,2017,38(2):386-376. [9] 石荣剑,陈斌,岳丰田,等.盾构地中对接冻结加固模型试验(Ⅱ):冻结过程中地层冻结温度场的分布特征[J].岩土力学,2017,38(9):639-646. [10] 吴雨薇,胡俊,汪树成.不同盐水温度下单管冻结温度场数值分析[J].森林工程,2017,33(6):60-66. [11] HU R,LIU Q,XING Y.Case study of heat transfer during artificial ground freezing with groundwater flow[J].Water,2018,10(10):1322. [12] 苏文德.冻结工法在富集海水地层下地铁联络通道施工中的应用研究[J].水利与建筑工程学报,2019,17(3):181-186. [13] 叶超,李忠超,梁荣柱,等.地下水含盐量对人工冻结效果影响分析[J].水利水运工程学报,2021(2):78-86. [14] 李方政,丁航,张绪忠.渗流作用下富水砂层双排管冻结壁形成规律模型试验研究[J].岩石力学与工程学报,2019,38(2):386-395. [15] 苏彦林,岳祖润,李晓康,等.渗流作用下砂层冻结模型试验研究[J].铁道标准设计,2020,64(10):94-100. [16] 周洁,李泽垚,万鹏,等.组合地层渗流对人工地层冻结法及周围工程环境效应的影响[J].岩土工程学报,2021,43(3):471-480. [17] 司轩昂,杨平,刘健鹏.土质对人工冻土冻结温度影响的试验研究[J].地质与勘探,2021,57(5):1166-1172.
点击查看大图
计量
- 文章访问数: 86
- HTML全文浏览量: 8
- PDF下载量: 2
- 被引次数: 0