Eigenvalue Imperfection Modal Method for Controlling Vertical Geometric Imperfections
-
摘要: 为了准确快速地分析带有初始几何缺陷的单层网壳结构静力稳定性,通过分析特征缺陷模态法和随机缺陷模态法的初始几何缺陷值,并对1/4、1/5、1/6和1/7矢跨比的K8凯威特单层网壳结构进行线性屈曲分析,发现特征缺陷模态法的竖向几何缺陷值小于随机缺陷模态法,在矢跨比较大时会更明显,进而分析了特征缺陷模态法在矢跨比较大时可靠度较低的原因,提出控制竖向几何缺陷的特征缺陷模态法。运用所提出的方法和N阶特征缺陷模态法对网壳结构进行了弹塑性荷载-位移全过程分析。结果表明,控制竖向几何缺陷的特征缺陷模态法与N阶特征缺陷模态法的计算结果接近,误差在工程允许的5%以内,控制竖向几何缺陷的特征缺陷模态法较N阶特征缺陷模态法可以更安全地评估网壳结构的稳定性能。Abstract: In order to accurately and quickly analyze the stability bearing capacity of single-layer reticulated shells with initial geometric defects, through analyzing the initial geometric imperfection values of eigenvalue imperfection modal method (EIM) and random imperfection modal method (RIMM), and conducting the linear buckling analysis of K8 Kaiweite single-layer reticulated shell structure with 1/4, 1/5, 1/6, 1/7 rise-span ratio, it was found that the vertical geometry imperfection value of the EIM was smaller than that of the RIMM, and it would be more obvious when the rise-span ratio was relatively large. Furthermore, the reason for the low reliability of the EIM when the rise-span was relatively large was analyzed, and the eigenvalue imperfection modal method for controlling vertical geometric imperfections (EIM-CVGI) was proposed. Using the proposed method and the N-order eigenvalue imperfection modal method, the elastoplastic load-displacement whole process analysis of the above four kinds of rise-span ratio reticulated shell structures was carried out. The results showed that the errors of the calculation results of the EIM-CVGI and the N-order eigenvalue defect modal method were within 5% of the engineering allowable. Compared with EIM, the stability performance of the reticulated shell structure could be evaluated more safely.
-
[1] 吴剑国,张其林.网壳结构稳定性的研究进展[J].空间结构, 2002(1):10-18. [2] 中华人民共和国住房和城乡建设部.空间网格结构技术规程:JGJ 7-2010[S].北京:中国建筑工业出版社, 2010. [3] KANI I M, MCCONNEL R E, SEE T. The analysis and testing of a single-layer, shallow braced dome[C]//3rd International Conference on Space Structures. Netherlands:Elsevier Applied Science Publishers, Ltd, 1984:613-618. [4] SEE T, MCCONNEL R E. Large displacement elastic buckling of space structures[J]. Journal of Structural Engineering, 1986, 112(5):1052-1069. [5] BORRI C, SPINELLI P. Buckling and post-buckling behaviour of single layer reticulated shells affected by random imperfections[J]. Computers&Structures, 1988, 30(4):937-943. [6] 陈昕,沈世钊.单层穹顶网壳的荷载-位移全过程及缺陷分析[J].建筑结构学报, 1992(3):11-18. [7] 蔡健,贺盛,姜正荣,等.单层网壳结构稳定性分析方法研究[J].工程力学, 2015, 32(7):103-110. [8] 魏德敏,涂家明.单层网壳结构非线性稳定的随机缺陷模态法研究[J].华南理工大学学报(自然科学版), 2016, 44(7):83-89. [9] 唐敢,尹凌峰,马军,等.单层网壳结构稳定性分析的改进随机缺陷法[J].空间结构, 2004(4):44-47,35. [10] 罗昱.改进的一致缺陷模态法在单层网壳稳定分析中的应用研究[D].天津:天津大学, 2007. [11] 曹正罡,范峰,沈世钊.单层球面网壳的弹塑性稳定性[J].土木工程学报, 2006(10):6-10. [12] BRUNO L, SASSONE M, VENUTI F. Effects of the equivalent geometric nodal imperfections on the stability of single layer grid shells[J]. Engineering Structures, 2016, 112:184-199. [13] CUI X Z, LI Y G, HONG H P. Reliability of stability of single-layer latticed shells with spatially correlated initial geometric imperfection modeled using conditional autoregressive model[J/OL]. Engineering Structures, 2019, 201[2019-11-15].https://doi.org/10.1016/j.engstruct.2019.109787. [14] 孙一喆,惠宽堂.单层网壳各向初始缺陷敏感性分析[J].建筑科学, 2020, 36(5):33-38. [15] 刘俊,罗永峰,张玉建.凯威特单层球面网壳的几何缺陷相关性[J].天津大学学报(自然科学与工程技术版), 2020, 53(5):535-541. [16] 蔡健,贺盛,姜正荣,等.单层网壳结构稳定分析中初始几何缺陷最大值的研究[J].建筑结构学报, 2015, 36(6):86-92.
点击查看大图
计量
- 文章访问数: 58
- HTML全文浏览量: 7
- PDF下载量: 0
- 被引次数: 0