Experimental Research on Flexural Properties of Chopped Basalt Fiber Reinforced Concrete Beams
-
摘要: 将玄武岩纤维作为增强材料掺入到混凝土基材中形成水泥复合材料,即为玄武岩纤维增强混凝土(BFRC)。以玄武岩纤维长径比为试验变量,开展了BFRC梁的四点弯曲静力加载试验,研究其在受弯过程中的力学行为以及玄武岩纤维的增强效果;基于所收集的纤维混凝土材料力学性能试验数据,建立纤维混凝土抗拉、抗压强度与基体混凝土抗压强度、纤维掺量、纤维长径比之间的关系,并基于既有RC梁的特征承载力计算模型,提出适用于BFRC梁的特征承载力预测模型。研究结果表明:BFRC梁均满足平截面假定,玄武岩纤维的加入对BFRC梁开裂和极限承载力有提高作用,其中长径比为1200的BFRC梁特征承载力提高最为明显;同时玄武岩纤维的掺入增加了裂缝条数,抵抗裂缝向高度方向发展,并使其截面弯曲刚度增大;提出的BFRC梁改良特征承载力预测模型的计算结果与试验结果拟合程度良好,能较好地预测BFRC梁的开裂、极限承载力,并能反映纤维在混凝土梁中的增益作用。Abstract: Basalt fiber is added into the concrete substrate as a reinforcing material to form a cement composite which calls basalt fiber reinforced concrete (BFRC). Taking the aspect ratio of basalt fiber as the test variable, the four-point bending static loading test for BFRC beams was carried out to study its mechanical behavior and the reinforcement effect of basalt fiber; based on the collected mechanical property test data of fiber reinforced concrete, the relations between the tensile and compressive strength of fiber reinforced concrete and the compressive strength of matrix concrete, fiber content and fiber length diameter ratio was established, the prediction model of characteristic bearing capacity of BFRC beam was proposed based on RC beam model. The results showed that BFRC beams could meet the plane section assumption, and the addition of basalt fiber could improve the cracking and ultimate bearing capacity of BFRC beams, among which the characteristic bearing capacity of BFRC beams with length diameter ratio of 1200 was the most obvious; at the same time, the addition of basalt fiber could reduce the maximum crack width, increase the number of cracks and increase the bending stiffness of the beam; the calculation results of the improved characteristic bearing capacity prediction model of BFRC beams proposed in the paper could fit well with the test results, which could better predict the cracking and ultimate bearing capacity of BFRC beams, and reflect the gain effect of fiber in concrete beams.
-
[1] 过镇海.钢筋混凝土原理[M].北京:清华大学出版社, 1999. [2] ARSLAN M E.Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete:CMOD measurement[J].Construction & Building Materials, 2016, 114:383-391. [3] HAIDO J H, TAYEH B A, MAJEED S S, et al.Effect of high temperature on the mechanical properties of basalt fiber selfcompacting concrete as an overlay material[J].Construction and Building Materials, 2020, 268:1-19. [4] SIM J, PARK C, MOON D Y.Characteristics of basalt fiber as a strengthening material for concrete structures[J].Composites Part B:Engineering, 2005, 36(6):504-512. [5] 杨雯雯.纤维混凝土力学性能及耐久性能试验研究[D].济南:山东大学, 2012. [6] HIGH C, SELIEM H M, EL-SAFTY A, et al.Use of basalt fibers for concrete structures[J].Construction and Building Materials, 2015, 96(15):37-46. [7] ZHANG Z, SHAO X D, ZHU P.Direct tensile behaviors of steelbar reinforced ultra-high performance fiber reinforced concrete:Effects of steel fibers and steel rebars[J].Construction and Building Materials, 2020, 243:1-16. [8] 陈宝春, 林毅焌, 杨简, 等.超高性能纤维增强混凝土中纤维作用综述[J].福州大学学报(自然科学版), 2020, 48(1):58-68. [9] 白雅嘉, 刘华新, 陈海涛, 等.不同纤维掺量BFRP筋玄武岩纤维再生混凝土梁抗剪性能试验研究[J].铁道科学与工程学报, 2020, 17(2):435-441. [10] DIAS D P, THAUMATURGO C.Fracture toughness of geopolymeric concretes reinforced with basalt fibers[J].Cement and Concrete Composites, 2005, 27(1):49-54. [11] ZIELIN'SKI K, OLSZEWSKI P.The impact of basaltic fibre on selected physical and mechanical properties of cement mortar[J].Betonwerk und Fertigteil-Technik/Concrete Precasting Plant and Technology, 2005, 71(3):28-33. [12] SIM J S, PARK C, MOON D Y.Characteristics of basalt fiber as strengthening material for concrete structures[J].Composites Part B Engineering, 2005, 36(6/7):504-512. [13] DYLMAR P D, CLELIO T.Fracture toughness of geopolymeric concretes reinforced with basalt fibers[J].Cement and Concrete Composites, 2005, 27(1):49-54. [14] 潘慧敏.玄武岩纤维混凝土力学性能的试验研究[J].硅酸盐通报, 2009, 28(5):955-958. [15] 谭智芳.玄武岩纤维增韧钢筋混凝土梁受弯性能试验研究[D].大连:大连理工大学, 2009. [16] 方圣恩, 张培辉, 洪华山.纤维混凝土梁受弯试验及开裂弯矩计算公式[J].建筑材料学报, 2019, 22(4):567-574. [17] 中国工程建设标准化协会.纤维混凝土结构技术规程:CECS38-2004[S].北京:中国计划出版社, 2004. [18] 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社, 2010. [19] 王钧, 马跃, 张野, 等.短切玄武岩纤维混凝土力学性能试验与分析[J].工程力学, 2014, 31(增刊1):99-102. [20] 张兰芳, 尹玉龙, 刘晶伟, 等.玄武岩纤维增强混凝土力学性能的研究[J].硅酸盐通报, 2014, 33(11):2834-2837. [21] 张兰芳, 尹玉龙, 岳瑜.玄武岩纤维掺量对混凝土力学性能的影响[J].硅酸盐通报, 2016, 35(9):2724-2728. [22] 刘大昌.玄武岩、聚丙烯混杂纤维混凝土性能试验研究[D].重庆:重庆交通大学, 2018. [23] 王意.玄武岩纤维混凝土力学性能试验研究[D].成都:西南交通大学, 2018. [24] 刘茜, 张津滔, 高子祁, 等.短切玄武岩纤维混凝土简支梁正截面受力性能试验研究[J].建筑结构学报:1-11.[2022-04-08].DOI: 10.14006/j.jzjgxb.2021.0403. [25] 吴英伯.短切碳纤维混凝土梁力学性能试验研究[D].大连:大连理工大学, 2017.
点击查看大图
计量
- 文章访问数: 132
- HTML全文浏览量: 18
- PDF下载量: 6
- 被引次数: 0