Fragility Analysis of Single-Layer Reticulated Shell Structures Subjected to Downbursts
-
摘要: 大跨空间结构风敏感性突出,极易遭受下击暴流影响。针对目前缺乏大跨空间结构抗下击暴流性能评估方法的问题,对下击暴流作用下单层球面网壳结构的易损性进行了研究,提出了针对下击暴流荷载的结构易损性分析方法。综合考虑下击暴流荷载的随机性与结构参数的不确定性,采用随机增量动力分析法求解不同荷载强度下的结构响应。结合易损性分析理论和二次回归分析,计算得到结构易损性函数,并进一步绘制易损性曲线,实现结构的抗下击暴流性能评估。研究结果表明:通过随机增量动力分析法和易损性分析的结合,能够对结构的抗下击暴流性能进行有效评估。在下击暴流这种极端风荷载作用下,单层球面网壳结构可能达到倒塌防止性态点(CP),而达到整体失稳性态点(GI)的概率则相对较小。Abstract: Long-span spatial structures are highly sensitive to wind loads, and are vulnerable to downbursts. In view of the lack of performance evaluation method for downburst-resistance of such structures, fragility of the single-layer spherical reticulated shell subjected to downbursts was studied, and a structural fragility analysis method for downburst loads was proposed. Considering the randomness of downburst loads and the uncertainty of structural parameters, the random incremental dynamic analysis (IDA) method was used to solve the structural response under different load intensity. Combined with the fragility analysis theory and quadratic regression analysis, the fragility function of the structure was calculated, and the fragility curves were further drawn to evaluate the downburst-resistance performance of the structure. The results showed that the combination of stochastic IDA method and fragility analysis could effectively evaluate the structural downburst-resistance performance. With the action of downbursts, the single-layer spherical reticulated shell might reach the CP performance point, while the probability of reaching the GI performance point was relatively small.
-
[1] ABOUTABIKH M, GHAZAL T, CHEN J X, et al. Designing a blade-system to generate downburst outflows at boundary layer wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019,186:169-191. [2] TRAUTNER C, OJDROVIC R, SCHAFER B W, et al. An investigation of the collapse of the dallas cowboys practice facility[C]//Forensic Engineering 2012:Gateway to a Safer Tomorrow. Reston:American Society of Civil Engineers,2013:1268-1277. [3] PINELLI J P, SIMIU E, GURLEY K, et al. Hurricane damage prediction model for residential structures[J]. Journal of Structural Engineering, 2004, 130(11):1685-1691. [4] LI Y. Fragility methodology for performance-based engineering of wood-frame residential construction[D]. Atlanta:Georgia Institute of Technology, 2005. [5] 赵明伟, 顾明. 轻型钢结构风灾易损性概率分析[J]. 中南大学学报(自然科学版), 2012, 43(9):3609-3618. [6] 赵秋颖. 既有建筑风灾易损性分析[D]. 沈阳:沈阳建筑大学, 2015. [7] 陈坚. 考虑风致内外压的高层建筑玻璃幕墙易损性研究[D]. 哈尔滨:哈尔滨工业大学, 2018. [8] 汪大海, 李森, 莫德秀. 输电杆塔风灾易损性的简化分析[J]. 低温建筑技术, 2020, 42(12):65-69. [9] 范存新, 葛义娇, 谢丽宇. 基于概率可靠度的输电塔风灾易损性分析[J]. 工业建筑, 2015, 45(7):84-88,94. [10] 卞荣, 徐卿, 俞恩科, 等. 台风作用下输电塔线体系多元状态监测及风偏可靠度分析[J]. 振动与冲击, 2020, 39(3):52-59. [11] TIAN L, ZHANG X, FU X. Fragility analysis of a long-span transmission tower-line system under wind loads[J]. Advances in Structural Engineering, 2020, 23(10):2110-2120. [12] TIAN L, ZHANG X, FU X. Collapse simulations of communication tower subjected to wind loads using dynamic explicit method[J/OL]. Journal of Performance of Constructed Facilities, 2020, 34(3)[2023-08-24].https://doi.org/10.1177/1369433220903983. [13] CHEN L, LETCHFORD C W. A deterministic-stochastic hybrid model of downbursts and its impact on a cantilevered structure[J]. Engineering Structures, 2004, 26(5):619-629. [14] 霍林生, 赵伟, 陈超豪. 下击暴流作用下单层球面网壳倒塌破坏研究[J]. 防灾减灾工程学报, 2022, 42(2):354-361,382. [15] 中国地震局.建(构)筑物地震破坏等级划分:GB/T 24335-2009[S]. 北京:中国标准出版社, 2009. [16] VAMVATSIKOS D, CORNELL C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3):491-514. [17] 中华人民共和国住房和城乡建设部.空间网格结构技术规程:JGJ 7-2010[S]. 北京:中国建筑工业出版社, 2010. [18] ZHONG J, ZHI X D, FAN F. Sensitivity of seismic response and fragility to parameter uncertainty of single-layer reticulated domes[J]. International Journal of Steel Structures, 2018, 18(5):1607-1616. [19] 赵建, 叶震, 余亮, 等. ±1100 kV特高压长悬臂输电铁塔风振特性研究[J]. 工业建筑, 2019, 49(4):8-14. [20] POLITIS S S, ZHANG Z M, HAN Z, et al. Stochastic analysis of network-level bridge maintenance needs using Latin hypercube sampling[J/OL]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A:Civil Engineering, 2021, 7(1)[2023-08-24].https://doi.org/10.1061/AJRUA6.0001099
点击查看大图
计量
- 文章访问数: 72
- HTML全文浏览量: 19
- PDF下载量: 0
- 被引次数: 0