中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿渣硫铝酸盐水泥混凝土热学与力学性能研究

康雪彤 周健 徐名凤 李辉 喻庆华 翟朝阳 林松涛 仲晓林

康雪彤, 周健, 徐名凤, 李辉, 喻庆华, 翟朝阳, 林松涛, 仲晓林. 矿渣硫铝酸盐水泥混凝土热学与力学性能研究[J]. 工业建筑, 2022, 52(4): 158-162,185. doi: 10.13204/j.gyjzG21070809
引用本文: 康雪彤, 周健, 徐名凤, 李辉, 喻庆华, 翟朝阳, 林松涛, 仲晓林. 矿渣硫铝酸盐水泥混凝土热学与力学性能研究[J]. 工业建筑, 2022, 52(4): 158-162,185. doi: 10.13204/j.gyjzG21070809
KANG Xuetong, ZHOU Jian, XU Mingfeng, LI Hui, YU Qinghua, ZHAI Chaoyang, LIN Songtao, ZHONG Xiaolin. Research on Thermal and Mechanical Properties of Slag Sulfoaluminate Cement Concrete[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 158-162,185. doi: 10.13204/j.gyjzG21070809
Citation: KANG Xuetong, ZHOU Jian, XU Mingfeng, LI Hui, YU Qinghua, ZHAI Chaoyang, LIN Songtao, ZHONG Xiaolin. Research on Thermal and Mechanical Properties of Slag Sulfoaluminate Cement Concrete[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 158-162,185. doi: 10.13204/j.gyjzG21070809

矿渣硫铝酸盐水泥混凝土热学与力学性能研究

doi: 10.13204/j.gyjzG21070809
基金项目: 

国家自然科学基金项目(51702082)。

详细信息
    作者简介:

    康雪彤,女,1994年出生,硕士研究生。

    通讯作者:

    周健,博士,教授,zhoujian@hebut.edu.cn。

Research on Thermal and Mechanical Properties of Slag Sulfoaluminate Cement Concrete

  • 摘要: 通过等温量热、绝热温升和抗压强度试验对比分析了矿渣硫铝酸盐水泥(S-SAC)与普通硅酸盐水泥(OPC)的热学和力学性能差异。结果表明:7 d时S-SAC水泥水化热总量比OPC水泥的低33.5%,其28 d混凝土抗压强度比OPC混凝土的高36.4%;不同水胶比下,S-SAC混凝土比OPC混凝土后期强度增幅高50%;同一配比下S-SAC混凝土绝热温升是OPC混凝土的49%;双掺粉煤灰和粒化高炉矿渣粉可在保持S-SAC混凝土早期强度的同时,提高后期强度增长率;粉煤灰掺量越高,S-SAC混凝土放热速度越慢,绝热温升越低。与OPC混凝土相比,S-SAC混凝土具有低热高后期强度增长率的优点。
  • [1] 丁宝瑛,王国秉.国内混凝土坝裂缝成因综述与防止措施[J].水利水电技术,1994,8(4):12-18.
    [2] 吴红燕,李兴贵,曹学仁,等.大体积混凝土温度裂缝观测及分析[J].水利与建筑工程学报,2011,9(2):40-43.
    [3] 王刘永.水利水电大体积混凝土浇筑裂缝成因及防裂策略[J].治淮,2019,8(1):46-47.
    [4] 王绍雄.综述大体积混凝土裂缝控制与施工技术的工程应用[J].江西建材,2016,5(4):90-93.
    [5] 黄国兴.论水工混凝土的抗裂性[C]//水工大坝混凝土材料和温度控制研究与进展.成都:2009:54-60.
    [6] LUZ C A D,HOOTON R D.Influence of curing temperature on the process of hydration of supersulfated cements at early age[J].Cement and Concrete Research,2015,77:69-75.
    [7] 王滋元.大体积混凝土结构水泥品种选择研究[D].大连:大连理工大学,2015.
    [8] MALKAWI A I H,MUTASHER S A,QIU T J.Thermal-structural modeling and temperature control of roller compacted concrete gravity dam[J].Journal of Performance of Constructed Facilities,2003,11(4):177-187.
    [9] 施正友,曹周生,韦灿强,等.低热硅酸盐水泥在三峡工程大体积混凝土中的研究及应用[J].混凝土,2007,10(12):84-87.
    [10] 姜春萌,宫经伟,唐新军.大体积混凝土低热水泥与普通水泥基胶凝材料热学及力学性能对比研究[J].水电能源科学,2019,37(8):114-117.
    [11] 陈智丰,张振秋,周健.高抗折超硫酸盐水泥及其制备方法:CN105330182A[P].2018-03-23.
    [12] 周健,陈智丰,张振秋.粒化高炉矿渣激发剂及其制备方法与用途:CN108083671A[P].2018-05-29.
    [13] 孙正宁,周健,慕儒,等.新型超硫酸盐水泥水化硬化机理[J].硅酸盐通报,2019,38(8):2362-2368.
    [14] 中华人民共和国国家质量监督检验检疫总局.中热硅酸盐水泥、低热硅酸盐水泥:GB/T 200-2017[S].北京:中国标准出版社,2017.
    [15] 中华人民共和国住房和城乡建设部.大体积混凝土施工标准:GB 50496-2018[S].北京:中国标准出版社,2018.
    [16] 丁向群,赵欣悦,徐晓婉.矿物掺合料对硫铝酸盐水泥-普通硅酸盐水泥复合体系性能的影响[J].新型建筑材料,2020,47(3):40-44.
    [17] RUBERT S,LUZ C A D,VARELA M V F,et al.Hydration mechanisms of supersulfated cement[J].Journal of Thermal Analysis and Calorimetry,2018,134(2):971-980.
    [18] 蒋卓.粉煤灰对硫铝酸盐水泥水化历程的影响[J].硅酸盐通报,2016,35(12):4088-4092.
    [19] 朱伯芳.混凝土绝热温升的新计算模型与反分析[J].水力发电,2003,16(4):29-32.
  • 加载中
计量
  • 文章访问数:  152
  • HTML全文浏览量:  28
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 网络出版日期:  2022-07-25

目录

    /

    返回文章
    返回