Research on Thermal and Mechanical Properties of Slag Sulfoaluminate Cement Concrete
-
摘要: 通过等温量热、绝热温升和抗压强度试验对比分析了矿渣硫铝酸盐水泥(S-SAC)与普通硅酸盐水泥(OPC)的热学和力学性能差异。结果表明:7 d时S-SAC水泥水化热总量比OPC水泥的低33.5%,其28 d混凝土抗压强度比OPC混凝土的高36.4%;不同水胶比下,S-SAC混凝土比OPC混凝土后期强度增幅高50%;同一配比下S-SAC混凝土绝热温升是OPC混凝土的49%;双掺粉煤灰和粒化高炉矿渣粉可在保持S-SAC混凝土早期强度的同时,提高后期强度增长率;粉煤灰掺量越高,S-SAC混凝土放热速度越慢,绝热温升越低。与OPC混凝土相比,S-SAC混凝土具有低热高后期强度增长率的优点。Abstract: The thermal and mechanical properties of slag sulfoaluminate cement (S-SAC) and ordinary Portland cement (OPC) were compared and analyzed by isothermal calorimetry, adiabatic temperature rise and compressive strength tests. The results showed that the total hydration heat of S-SAC cement was 33.5% lower than that of OPC cement at 7 days, and the 28 days compressive strength of S-SAC concrete was 36.4% higher than that of OPC concrete. With different water-binder ratios, the later strength of S-SAC concrete was 50% higher than that of OPC concrete, and the adiabatic temperature rise of S-SAC concrete was 49% of that of OPC concrete at the same ratio. Adding fly ash and granulated blast furnace slag powder could not only maintain the early strength of S-SAC concrete, but also increase the growth rate of later strength; the higher the content of fly ash, the slower the heat release rate of S-SAC concrete, and the lower the adiabatic temperature rise. Compared with OPC concrete, S-SAC concrete showed the advantages of low heat and high strength growth rate in the later stage.
-
[1] 丁宝瑛,王国秉.国内混凝土坝裂缝成因综述与防止措施[J].水利水电技术,1994,8(4):12-18. [2] 吴红燕,李兴贵,曹学仁,等.大体积混凝土温度裂缝观测及分析[J].水利与建筑工程学报,2011,9(2):40-43. [3] 王刘永.水利水电大体积混凝土浇筑裂缝成因及防裂策略[J].治淮,2019,8(1):46-47. [4] 王绍雄.综述大体积混凝土裂缝控制与施工技术的工程应用[J].江西建材,2016,5(4):90-93. [5] 黄国兴.论水工混凝土的抗裂性[C]//水工大坝混凝土材料和温度控制研究与进展.成都:2009:54-60. [6] LUZ C A D,HOOTON R D.Influence of curing temperature on the process of hydration of supersulfated cements at early age[J].Cement and Concrete Research,2015,77:69-75. [7] 王滋元.大体积混凝土结构水泥品种选择研究[D].大连:大连理工大学,2015. [8] MALKAWI A I H,MUTASHER S A,QIU T J.Thermal-structural modeling and temperature control of roller compacted concrete gravity dam[J].Journal of Performance of Constructed Facilities,2003,11(4):177-187. [9] 施正友,曹周生,韦灿强,等.低热硅酸盐水泥在三峡工程大体积混凝土中的研究及应用[J].混凝土,2007,10(12):84-87. [10] 姜春萌,宫经伟,唐新军.大体积混凝土低热水泥与普通水泥基胶凝材料热学及力学性能对比研究[J].水电能源科学,2019,37(8):114-117. [11] 陈智丰,张振秋,周健.高抗折超硫酸盐水泥及其制备方法:CN105330182A[P].2018-03-23. [12] 周健,陈智丰,张振秋.粒化高炉矿渣激发剂及其制备方法与用途:CN108083671A[P].2018-05-29. [13] 孙正宁,周健,慕儒,等.新型超硫酸盐水泥水化硬化机理[J].硅酸盐通报,2019,38(8):2362-2368. [14] 中华人民共和国国家质量监督检验检疫总局.中热硅酸盐水泥、低热硅酸盐水泥:GB/T 200-2017[S].北京:中国标准出版社,2017. [15] 中华人民共和国住房和城乡建设部.大体积混凝土施工标准:GB 50496-2018[S].北京:中国标准出版社,2018. [16] 丁向群,赵欣悦,徐晓婉.矿物掺合料对硫铝酸盐水泥-普通硅酸盐水泥复合体系性能的影响[J].新型建筑材料,2020,47(3):40-44. [17] RUBERT S,LUZ C A D,VARELA M V F,et al.Hydration mechanisms of supersulfated cement[J].Journal of Thermal Analysis and Calorimetry,2018,134(2):971-980. [18] 蒋卓.粉煤灰对硫铝酸盐水泥水化历程的影响[J].硅酸盐通报,2016,35(12):4088-4092. [19] 朱伯芳.混凝土绝热温升的新计算模型与反分析[J].水力发电,2003,16(4):29-32.
点击查看大图
计量
- 文章访问数: 306
- HTML全文浏览量: 53
- PDF下载量: 1
- 被引次数: 0