Experimental and Theoretical Study on Stress-Strain Fatigue Properties of High-Strength Steel Bars
-
摘要: 为比较高强钢筋与HRB400钢筋在疲劳特性方面的差异,通过应力疲劳试验,获得HRB600E、HRB500E钢筋的容许应力幅值,分析钢筋直径对容许应力幅的影响;研究高强钢筋在等幅应变疲劳过程中的应力-应变循环特性,给出Coffin-Manson和Hollomon模型的拟合式和三参数疲劳计算式。首次用耗能韧度评价钢筋在应变疲劳过程中(或地震反复作用)消耗地震能量的能力。结果表明:钒-氮微合金化生产的HRB500E钢筋,其低周应变疲劳寿命和循环韧度均优于钒-氮-铌方法生产的HRB500E钢筋;高强度钢筋有利于提高疲劳寿命、容许应力幅值和总耗能韧度等;总耗能韧度与应变幅有关,增加应变幅值,总耗能韧度减小;相同应变幅值,T63E高强钢筋疲劳寿命比HRB400钢筋更长。最终建立总应变幅与强度损失系数、塑性应变范围的关系。Abstract: In order to compare the fatigue characteristics of high-strength steel bars with that of HRB400 steel bars, the allowable stress amplitudes of HRB600E and HRB500E steel bars were obtained through stress and strain fatigue tests, and the effects of diameters of steel bars and fatigue loading frequencies on the allowable stress amplitudes were analyzed; the stress-strain cycling properties of high-strength steel bars under constant-amplitude strain fatigue were studied and Coffin-Manson and Hollomon formulas and three-parameter fatigue formulas were established. Energy dissipation toughness was used for the first time to evaluate the capability of steel bars to dissipate seismic energy during strain fatigue (or repeated earthquake action). The test showed that the low cycle fatigue life of strain and cycle toughness of HRB500E steel bars produced by V-N microalloying were better than those of HRB500E steel bars produced by V-N-Nb method; high-strength steel bars were of benefit to improving their fatigue lifes, allowable stress amplitudes and total energy dissipation toughness. The total energy-consuming toughness was related to the strain amplitudes, increasing the strain amplitude decreased the total energy-consuming toughness; the fatigue life of T63E high strength steel bars was longer than that of HRB400 steel bars under the same strain amplitude. Finally, the relation between the total strain amplitude and the loss coefficient of strength or the plastic strain range was established.
-
Key words:
- high-strength steel bars /
- stress fatigue /
- strain fatigue /
- seismic resistance /
- fatigue parameters
-
[1] 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社,2010. [2] 中华人民共和国交通运输部.公路钢筋混凝土及预应力混凝土桥涵设计规范:JTG 3362-2018[S].北京:人民交通出版社,2018. [3] 吕煜坤,赵雪柔,石拓.不同生产工艺的500 MPa抗震钢筋高应变低周疲劳性能分析[J].西安工业大学学报,2019,39(3):194-202. [4] 孙传智,缪长青,李爱群,等.630 MPa超高强钢筋低周疲劳性能试验研究[J].建筑结构学报,2021,42(4):194-202. [5] 杨红,冉小峰,谢琴.抗震钢筋考虑屈曲的低周疲劳性能和变形能力研究[J].建筑结构学报,2021,42(3):102-113. [6] 中华人民共和国国家质量监督检验检疫总局.金属材料拉伸试验第1部分室温试验:GB/T 228.1-2010[S].北京:中国标准出版社,2010. [7] 中华人民共和国国家质量监督检验检疫总局.钢筋混凝土用钢材试验方法:GB/T 28900-2012[S].北京:中国标准出版社,2012. [8] 盛光敏.钢筋的抗震性能问题[C]//2009全国建筑钢筋生产设计与应用技术交流研讨会.2009. [9] 邓宗才,姚军锁.高强箍筋约束超高性能混凝土柱轴压性能[J].复合材料学报,2020,37(10):2590-2601. [10] 高立,左工.基于Reinforcing Steel本构的高强钢筋混凝土柱纤维模型研究[J].世界地震工程,2021,37(3):129-137. [11] 张耀庭,赵璧归,李瑞鸽,等.HRB400钢筋单调拉伸及低周疲劳性能试验研究[J].工程力学,2016,33(4):121-129.
点击查看大图
计量
- 文章访问数: 125
- HTML全文浏览量: 9
- PDF下载量: 1
- 被引次数: 0