Experimental Research on Mix Proportion and Compressive Size Effect of ECC in the Hygrothermal Curing Environment in South China
-
摘要: 为探究春夏季平均相对湿度80%、日间平均气温30℃以上的华南地区湿热环境下工程水泥基复合材料(ECC)的合理使用配比及抗压尺寸效应,以粉煤灰、聚乙烯醇(PVA)纤维、养护环境和试件尺寸为基本参数,对2类9组共108个ECC材性试件进行破坏试验。通过分析不同因素对ECC抗压、抗折和劈裂抗拉强度的影响规律,得到适于华南湿热环境的ECC合理使用配合比及其抗压尺寸效应系数。结果表明:华南自然湿热养护环境下,ECC的抗压、抗折和劈裂抗拉强度主要由PVA纤维控制,增加胶凝材料中粉煤灰掺量有利于改善ECC的抗折性能,但不利于提高其抗拉强度,粉煤灰掺量为35%、PVA纤维掺量为1.0%的ECC抗压、抗折和劈裂抗拉性能综合最;标准养护、湿热养护、温水养护条件下立方体抗压强度尺寸效应的平均系数为fcu70.7∶fcu100∶fcu150=0.93∶1.00∶0.78,轴心抗压强度尺寸效应的平均系数为fc70.7∶fc100∶fc150=0.96∶1.00∶0.93;温湿度对横截面边长为70.7 mm的立方体和棱柱体试块的ECC抗压强度尺寸效应影响较大。Abstract: In order to study the mix proportion and compression size effect of engineered cementitious composites (ECC) under hygrothermal curing environment with average relative humidity of 80% and daytime average temperature of 30 ℃ in spring and summer, material tests on 108 specimens in 2 categories involving variables of fly ash, polyvinyl alahol fiber (PVA) fibers, curing environment, and geometrical dimensions were conducted. Based on the experimental results, favorable mix proportions and size effect coefficients of the ECC under the hygrothermal curing environment were obtained. The results indicated that the compression, shearing, and tensile performance of ECC was determined by the amount of PVA fibers, and the fly ash contributed to the shear strength of ECC, but reduced its tensile strength. Under the hygrothermal curing environment of South China, the ECC mix proportion with 35% fly ash and 1.0% PVC fibers had the most favorable mechanical properties, and the size effect coefficients for cubic and prism strengths of the ECC were fcu70.7∶fcu100∶fcu150=0.93∶1.00∶0.78 and fc70.7∶fc100∶fc150=0.96∶1.00∶0.93, respectively. The temperature and humidity had obvious size effect on the prism and cube specimen with the cross section of 70.7 mm side length.
-
Key words:
- mix proportion /
- curing environment /
- size effect /
- compressive strength
-
[1] LI V C,LEUNG C K Y.Steady state and multiple cracking of short random fiber composites[J].Journal of Engineering Mechanics,ASCE,1992,188(11):2246-2264. [2] LI V C.On engineered cementitious composites (ECC) a review of the material and its applications[J].Journal of Advanced Concrete Technology,2003,1(3):215-230. [3] TURK K,NEHDI M L.Flexural toughness of sustainable ECC with high-volume substitution of cement and silica sand[J].Construction and Building Materials,2021,270.https://doi.org/10.1016/j.conbuildmat.2020.121438. [4] 张志刚,张仁毅,张沛,等.可自修复的高延性混凝土(ECC)在机场道面的适用性分析[J].重庆大学学报,2021,44(1):97-105. [5] 王衍.高韧性纤维增强水泥基复合材料物理力学性能试验研究[D].哈尔滨:哈尔滨工业大学,2016. [6] 邓明科,秦萌,梁兴文.高延性纤维混凝土抗压性能试验研究[J].工业建筑,2015,45(4):120-126. [7] BEUSHAUSEN H,GILLMER M,ALEXANDER M.The influence of superabsorbent polymers on strength and durability properties of blended cement mortars[J].Cement& Concrete Composite,2014,52:73-80. [8] 郭寅川,黄忠财,王文真,等.湿热环境下SAP内养生混凝土抗碳化性能及机理研究[J].建筑材料学报,2022,25(1):16-23. [9] 胡春红,高艳娥,丁万聪.超高韧性水泥基复合材料受压性能试验研究[J].建筑结构学报,2013,34(12):128-132,154. [10] 梁济丰,吕磊,余晓青.聚乙烯醇纤维增强水泥基复合材料力学性能试验研究[J].混凝土与水泥制品,2013(11):48-51. [11] 王振波,韩宇栋.高延性水泥基材料高温力学性能研究进展[J].三峡大学学报(自然科学版),2019,41(5):65-69. [12] DANG J T,HAO J,DU Z H.Effect of superabsorbent polymer on the properties of concrete[J].Polymers,2017,9:672.https://doi.org/10.33p0/polym9120672. [13] GAO S L,HU G H.Experimental study on biaxial dynamic compressive properties of ECC[J].Materials,2021,14.https://doi.org/10.3390/ma14051257. [14] WU H L,YU J,DU Y J,et al.Mechanical performance of MgO-doped engineered cementitious composites (ECC)[J].Cement and Concrete Composites,2021,115.https://doi.org/10.1016/j.cemconcomp.2020.103857. [15] NGUYEN H H,CHOI J I,PARK S E,et al.Autogenous healing of high strength engineered cementitious composites (ECC) using calcium-containing binders[J].Construction and Building Materials,2020,265(30).https://doi.org/10.1016/j.conbuildmat.2020.120857. [16] 何淅淅,甘甜.ECC抗压强度及其尺寸效应的试验研究[J].建筑技术,2019,50(2):113-116. [17] 邓明科,常云涛,梁兴文,等.高延性水泥基复合材料抗压强度尺寸效应的正交试验研究[J].工业建筑,2013,43(7):80-85. [18] 李雪阳,江世永,飞渭,等.高韧性水泥基复合材料强度尺寸效应试验研究与正交分析[J].中国材料进展,2017,36(6):473-478. [19] 朱长书,孙林柱,王雨,等.PVA纤维增强水泥基材料尺寸效应及相关性能研究[J].混凝土与水泥制品,2015(12):58-61. [20] 李庆华,周宝民,黄博滔,等.超高韧性水泥基复合材料抗压性能的尺寸效应研究[J].水利学报,2015,46(2):174-182. [21] 秦萌.高延性纤维混凝土受压力学性能试验研究[D].西安:西安建筑科技大学,2014. [22] 王晶.高延性水泥基复合材料力学性能试验研究[D].西安:西安建筑科技大学,2013. [23] 黄可,周旭.PVA-ECC单轴抗压试验及本构关系[J].四川建筑科学研究,2020(4):75-81. [24] 于浩.高延性混凝土基本力学性能与弯曲韧性的尺寸效应研究[D].西安:西安建筑科技大学,2018. [25] FISCHER G.Deformation behavior of reinforced ECC flexural members under reversed cyclic loading conditions[D].Michigan:University of Michigan,2002:40. [26] 李晓琴,周旭,李世华.粉煤灰掺量对PVA-ECC性能的影响[J].硅酸盐通报,2020,39(12):3783-3790. [27] 刘从亮,毕远志,华渊.高掺量粉煤灰PVA-ECC的力学性能研究及粉煤灰作用机理分析[J].硅酸盐通报,2017,36(11):3739-3744. [28] 李可,喻鹏,刘伟康,等.工程水泥基复合材料受压性能及应力-应变关系研究[J].工业建筑,2020,50(3):172-177.
点击查看大图
计量
- 文章访问数: 122
- HTML全文浏览量: 19
- PDF下载量: 1
- 被引次数: 0