Research on Wind Pressure Distribution of Truncated Ellipsoid Air-Supported Structure Considering Fluid-Solid Interaction and Fluctuating Wind Effect
-
摘要: 研究了考虑流固耦合与脉动风效应下某截椭球形充气膜结构的风压分布特性。首先,利用线性滤波器法在MATLAB中得到的脉动风速时程数据并导入Fluent中。其次,通过Workbench 17.0平台的分区弱耦合算法数值模拟得到了风致响应稳定后不同风向角、高度、内压下结构的风压系数。结果表明,考虑流固耦合时结构的负压系数极值明显变大;三个变量对结构风压系数分布、大小和变化幅度都有一定程度的影响,其中在400 Pa时能保证结构风压极值保持在较低水平。Abstract: The characteristics of wind pressure distribution of an ellipsoidal air-supported structure considering fluid-structure interaction and fluctuating wind effect were studied. Firstly, the time-history data of fluctuating wind speed obtained in MATLAB by using linear filter method was imported into Fluent. Secondly, the wind pressure coefficients of the structures under different wind direction angles, heights and internal pressures after the wind-induced response stabilized were obtained by the partitioned weakly coupled algorithm on Workbench 17.0 platform. The results showed that the extreme values of the negative pressure coefficient increased obviously when the fluid-structure interaction was considered. The three variables had influence on the distribution, magnitude and changing rate of wind pressure. The wind pressure extreme values of the structure could be kept at a low level at 400 Pa.
-
[1] 张其林. 膜结构在我国的应用回顾和未来发展[J]. 建筑结构, 2019, 49(19):55-64. [2] 申跃奎, 赵德顺, 王秦. 考虑流固耦合作用的充气膜结构风压分布研究[J]. 计算力学学报, 2017, 34(5):665-671. [3] 赵德顺. 考虑流固耦合的充气膜结构风动力特性研究[D]. 西安:西安建筑科技大学, 2017. [4] 孙国军, 吴明泽, 何艳丽,等. 加劲索网对超大跨度气承式膜结构性能影响[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(增刊2):54-59. [5] 张虎跃, 王秀丽. 流线型单脊膜结构表面风压特性数值模拟分析[J]. 工业建筑, 2021,51(7):90-97. [6] 王福军. 计算流体动力学分析[M]. 北京:清华大学出版社, 2004. [7] GLÜCK M, BREUER M, DURST F, et al. Computation of wind-induced vibrations of flexible shells and membranous structures[J]. Journal of Fluids and Structures, 2003, 17:739-765. [8] NAYER G D, APOSTOLATOS A, WOOD J N, et al. Numerical studies on the instantaneous fluid-structure interaction of an air-inflated flexible membrane in turbulent flow[J]. Journal of Fluids and Structures, 2018, 82:577-609. [9] WOOD J N, BREUER M, NAYER G D. Experimental studies on the instantaneous fluid-structure interaction of an air-inflated flexible membrane in turbulent flow[J]. Journal of Fluids and Structures, 2018, 80:405-440. [10] 武岳, 沈世钊. 膜结构风振分析的数值风洞方法[J]. 空间结构, 2003, 9(2):38-43. [11] 陈怡然, 周岱, 孙颖昊,等. 典型组合形体空间膜结构风振响应的数值分析[J]. 上海交通大学学报, 2012, 46(10):1587-1593. [12] 李如地, 李华峰, 周岱,等. 某典型细长索膜结构风振效应的数值模拟分析[J].空间结构, 2014, 20(3):36-41. [13] 武岳, 孙瑛, 郑朝荣,等. 风工程与结构抗风设计[M]. 哈尔滨:哈尔滨工业大学出版社, 2019. [14] 沈国辉, 黄俏俏, 郭勇,等. 脉动风场的模拟方法及其在输电线路风振计算中的应用[J]. 空气动力学学报, 2013, 31(1):69-74. [15] 乔磊, 杨庆山. 大跨薄膜结构平均风压的数值模拟技术[J]. 土木工程学报, 2010, 43(增刊2):170-175. [16] KAWAMURA S, KIUCHI T. An experimental study of a one-membrane type pneumatic structure-wind load and response[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 23:127-140. [17] SRIVASTAVA N, TURKKAN N. Experimental determination of wind pressure distribution for cylindrical and spherical flexible membrane structures[J]. Canadian Journal of Civil Engineering, 1995, 22:23-31. [18] SUN X, YU R, WU Y. Investigation on wind tunnel experiments of ridge-valley tensile membrane structures[J]. Engineering Structures, 2019, 187:280-298. [19] 孙晓颖, 李天娥, 张强,等. 典型张拉膜结构风压分布特性数值分析[J]. 建筑结构学报, 2016, 37(增刊1):1-12.
点击查看大图
计量
- 文章访问数: 298
- HTML全文浏览量: 28
- PDF下载量: 2
- 被引次数: 0