Experimental Research on Mechanical Properties of Fiber-Reinforced Self-Compacting RPC Long Columns Restricted to GFRP Tubers Under Axial Compression
-
摘要: 提出了一种流动性能大于255mm的钢纤维自密实活性粉末混凝土,以钢纤维掺量、GFRP管缠绕角度和长细比为设计参数,设计了7根玻璃纤维增强复材(GFRP)管约束纤维增强自密实活性粉末(RPC)长柱,并对其轴向受力性能进行试验研究。试验结果表明:虽然钢纤维改善了混凝土材料的抗压和抗剪切性能,但其对组合柱的破坏特性影响较小;与±45°GFRP缠绕管相比,±80°GFRP缠绕管对组合长柱的极限承载力和变形性能提升显著;长细比与试件极限承载力呈负相关,长细比越大,曲线的初始刚度及峰值荷载越小。在GFRP约束自密实RPC短柱计算模型的基础上,基于长细比关系的折减系数,提出GFRP约束自密实RPC长柱的极限承载力计算式,计算结果与试验结果均吻合较好,与过往的试验研究误差较小。
-
关键词:
- 组合柱 /
- 玻璃纤维增强复材 /
- 纤维增强自密实RPC /
- 受压性能 /
- 极限承载力
Abstract: A steel fiber-reinforced self-compacting reactive powder concrete with greater than 255 mm flowability was proposed. Seven fiber-reinforced self-compacting RPC long columns restricted to GFRP tubes were designed. Their mechanical properties under axial load was studied experimentally, with steel fiber admixture, GFRP tube winding angle, and length-to-fine ratio as design parameters. According to the experiment, the steel fiber could improve the compressive and shear resistance of concrete material but had little influence on the column damage characteristics. The ±80°GFRP tubes significantly improved the ultimate bearing capacity and deformation performance compared with the ±45°GFRP tubes. The larger the slenderness ratio, the smaller the initial stiffness and peak load of curve. Based on the calculation model of fiber-reinforced self-compacting RPC short columns restricted to GFRP tubes, the ultimate bearing capacity calculation equation of fiber-reinforced self-compacting RPC long columns restricted to GFRP tubes was proposed based on the discount factor of the length to slenderness ratio relations. The calculation results were in good agreement with the test results, and the error was more acceptable compared with the past test data. -
[1] 叶列平, 冯鹏.FRP在工程结构中的应用与发展[J].土木工程学报, 2006(3):24-36. [2] AMRAN Y H M, ALYOUSEF R, RASHID R S M, et al.Properties and applications of FRP in strengthening RC structures:a review[J].Structures, 2018, 16:208-238. [3] 范向前, 刘决丁, 胡少伟, 等.FRP加固混凝土研究现状与展望[J].混凝土, 2019(12):156-160. [4] 滕锦光.新材料组合结构[J].土木工程学报, 2018, 51(12):1-11. [5] LI G, MARICHERLA D, SINGH K, et al.Effect of fiber orientation on the structural behavior of FRP wrapped concrete cylinders[J].Composite Structures, 2006, 74(4):475-483. [6] 张冰, 魏威, 冯贵森, 等.纤维缠绕角度对GFRP约束混凝土短柱轴压性能的影响[J].建筑结构学报, 2019, 40(增刊1):192-199. [7] 李杰, 薛元德, 李文晓.纤维增强塑料管约束混凝土本构模型试验研究[J].同济大学学报(自然科学版), 2007(4):461-466. [8] 王清湘, 阮兵峰, 崔文涛.GFRP套管钢筋混凝土短柱轴压力学性能试验研究[J].建筑结构学报, 2009, 30(6):122-127. [9] 陈百玲, 秦国鹏, 王连广.GFRP 管钢骨混凝土轴压短柱承载力研究[J].东北大学学报 (自然科学版), 2010, 31(7):1035-1038. [10] 龙跃凌, 蔡兆琼, 黄启山, 等.GFRP 管约束混凝土短柱轴压性能和尺寸效应研究[J].混凝土, 2015(9):47-49. [11] KABIR M Z, SHAFEI E.Plasticity modeling of FRP-confined circular reinforced concrete columns subjected to eccentric axial loading[J].Composites Part B:Engineering, 2012, 43(8):3497-3506. [12] 许平, 姚谏, 卢哲刚.纤维增强复合材料管-混凝土-钢管组合长柱偏心受压试验研究[J].工业建筑, 2014, 44(1):134-137. [13] 杨俊杰, 周涛.纤维铺设角度对 FRP-混凝土组合柱承载力影响的有限元分析[J].浙江工业大学学报, 2014, 42(3):294-297. [14] 宋志刚, 樊成, 宋力.GFRP 管混凝土轴压短柱承载力研究[J].水利与建筑工程学报, 2017, 15(2):71-75. [15] 张云峰, 隋如玉, 于雪松.开孔对 GFRP 管约束混凝土柱受压性能的影响[J].北华大学学报 (自然科学版), 2019(2):268-275. [16] LAM L, TENG J G.Strength models for fiber-reinforced plastic-confined concrete[J].Journal of Structural Engineering, 2002, 128(5):612-623. [17] LAM L, TENG J G.Design-oriented stress-strain model for FRP-confined concrete[J].Construction and Building Materials, 2003, 17(6/7):471-489. [18] LAM L, TENG J G.Design-oriented stress-strain model for FRP-confined concrete in rectangular columns[J].Journal of Reinforced Plastics and Composites, 2003, 22(13):1149-1186. [19] 王清湘, 关宏波, 崔文涛.GFRP套管混凝土长柱轴压力学性能试验[J].建筑结构, 2010, 40(11):80-83. [20] 秦国鹏, 王连广, 刘美思.GFRP管钢骨混凝土组合柱偏压承载力计算[J].东北大学学报(自然科学版), 2010, 31(8):1200-1203. [21] 关宏波, 王清湘.玻璃纤维增强套管钢筋混凝土组合柱偏压承载力计算[J].工业建筑, 2012, 42(10):42-46. [22] 王连广, 周乐.GFRP管钢骨高强混凝土偏压柱试验研究[J].工程力学, 2011, 28(1):145-149, 156. [23] 张海霞, 何禄源, 曹朋朋.FRP纤维缠绕角度对FRP管约束钢骨混凝土中长柱偏压力学性能的影响分析[J].建筑结构学报, 2013, 34(增刊1):345-352. [24] 章雪峰, 单鲁阳, 杨城, 等.GFRP管混凝土组合长柱的轴心受压特性研究[J].建筑结构, 2018, 48(9):72-77. [25] 郑文忠, 吕雪源.活性粉末混凝土研究进展[J].建筑结构学报, 2015, 36(10):44-58. [26] 曾翔, 邹娟, 姜宝石, 等.FRP 管活性粉末混凝土柱研究展望[J].工业建筑, 2016, 46(增刊2):683-686, 657. [27] ALI T K M, RIDHA M M S, ASAAD Z, et al.Comparison study of axial behavior of RPC-CFRP short columns[J].Journal of Materials and Engineering Structures, 2015, 2(2):57-67. [28] 刘晓峰, 张颖, 阎述韬, 等.玄武岩纤维增强复材约束的玄武岩纤维混凝土的力学性能[J].工业建筑, 2021, 51(1):187-193. [29] 赵悦.FRP 管活性粉末混凝土柱抗震性能非线性分析[D].哈尔滨:黑龙江大学, 2016. [30] 祝明桥, 李智, 张紫薇.GFRP管自密实微膨胀RPC短柱轴压性能试验研究[J/OL].工业建筑:1-11[2021-05-30].https://doi.org/10.13204/j.gyjzG20050301. [31] 中国建筑材料工业协会.水泥胶砂流动度测定方法:GB/T 2419-2005[S].北京:中国标准出版社, 2005. [32] 中国建筑材料工业协会.纤维增强热固性塑料管轴向压缩性能试验方法:GB/T 5350-2005[S].北京:中国标准出版社, 2005. [33] American Society of Testing Materials.Standard test method for apparent hoop tensile strength of plastic or reinforced plastic pipe:ASTM D2290-16[S].West Conshohocken:ASTM, 2008. [34] SILVA M A, RODRIGUES C C.Size and relative stiffness effects on compressive failure of concrete columns wrapped with glass FRP[J].Journal of Materials in Civil Engineering, 2006, 18(3):334-342. [35] TENG J G, JIANG T, LAM L, et al.Refinement of a design-oriented stress-strain model for FRP-confined concrete[J].Journal of Composites for Construction, 2009, 13(4):269-278. [36] 于峰, 牛荻涛.长细比对FRP约束混凝土柱承载力的影响[J].土木工程学报, 2008(6):40-44. [37] 刘杰, 刘庆洋, 安琳.GFRP混凝土圆形管柱试验研究[J].长春工程学院学报(自然科学版), 2007(1):11-14. [38] 崔文涛.GFRP套管钢筋混凝土柱轴压力学性能研究[D].大连:大连理工大学, 2007.
点击查看大图
计量
- 文章访问数: 79
- HTML全文浏览量: 3
- PDF下载量: 1
- 被引次数: 0