Numerical Simulations of Pullout Characteristics and a Calculation Method for Ultimate Pullout Resistance of Denti-Geogrids
-
摘要: 针对新型土工筋材——带齿格栅,采用数值模拟方法对其拉拔过程进行研究,对比考察了绕流滑动模型、Perterson-Anderson模型、Jewell模型、Chai模型、Rankine模型和数值分析模型在计算单齿格栅拉拔力时的准确性,研究了带齿格栅界面摩擦特性。在因素分析的基础上提出了多齿格栅极限拉拔力计算式。研究表明:1)对于单齿格栅极限拉拔力,由Jewell模型计算所得结果与数值模拟结果最为接近(平均误差约为5.35%),Rankine模型在筋材拉拔力计算中应用简便且误差较小。2)在相同的试验条件下,带齿格栅的拉拔力远高于普通土工格栅;相应地,带齿格栅的界面黏聚力和界面摩擦角、拉拔系数以及各级法向应力作用下的似摩擦系数均比普通格栅要大。3)对于多齿格栅,其极限拉拔力与齿筋数目、齿筋间距、法向应力分别呈指数、对数和线性关系。最后,采用构建的多齿格栅极限拉拔力算式计算了不同工况条件下的极限拉拔力,验证了其可靠性。Abstract: Aiming at a new geotechnical reinforcing material—denti-geogrids, pullout tests were simulated by numerical simulations. The accuracy for calculation results of the ultimate pullout resistance for denti-geogrids with a single transverse rib by the flow-around model, Peterson-Anderson model, Jewell model, Chai model and Rankine model, as well as the numerical analysis model were comparatively researched. And the friction characteristics of the interfaces were studied and the formula for the ultimate pullout resistance of denti-geogrids with multi-ribs was put forward on the basis of factor analysis. Researches showed that: 1) For denti-geogrid with a single transverse rib, the ultimate pullout resistance calculated by Jewell model was closest to the numerical simulation result (with an average error of 5.35%), the Rankine model was relatively simple and precise for engineering application. 2) In the same test conditions, the pullout resistance of denti-geogrids was much higher than that of common geogrids. Also, the interface cohesion, friction angles, pullout coefficients, and apparent friction coefficients of denti-geogrids at all levels of normal stress were larger. 3) For denti-geogrids with multi-ribs, the relations for the ultimate pullout resistance between the detni-geogrid rib quantities, spacing and normal stress were separately exponential, logarithmic and linear. The ultimate pullout resistance for denti-geogrids with multi-ribs in different working conditions was calculated by the suggested formula, and the reliability was verified.
-
Key words:
- denti-geogrid /
- pull-out test /
- numerical simulation /
- ultimate resistance
-
[1] 张孟喜, 闵兴. 单层立体加筋砂土性状的三轴试验研究[J]. 岩土工程学报, 2006,28(8):931-936. [2] 张孟喜, 张贤波. H-V加筋黏性土的强度与变形特性[J]. 岩土力学, 2009, 30(6): 1563-1568. [3] 魏伟, 张孟喜. 水平筋形式对水平-竖向加筋砂土强度的影响[J]. 上海大学学报(自然科学版), 2011, 17(2): 196-202. [4] 孙亮富, 张孟喜. 齿筋形式对加筋效果影响的对比试验[J]. 上海大学学报(自然科学版), 2012, 18(6): 640-644. [5] 张陶陶, 张孟喜. 基于有限元强度折减法的H-V加筋地基破坏机理[J]. 上海交通大学学报, 2011, 45(5): 757-761. [6] 彭明远, 黄超. 水平-竖向组合式加筋土挡墙土-筋相互作用机理[J]. 上海大学学报(自然科学版), 2009, 15(2): 199-204. [7] 周淮, 张孟喜. 水平-竖向加筋土挡墙作用机理的离散元数值模拟[J]. 上海交通大学学报, 2012, 46(10):1548-1552. [8] 方薇, 陈向阳, 杨果林. 带齿格栅加筋挡墙工作机理的数值模拟研究[J]. 公路交通科技, 2017, 34(1):32-38. [9] 张孟喜, 黄超. 刚性条带式带齿加筋土的极限拉拔力模型[J]. 岩土工程学报, 2009, 31(9): 1336-1344. [10] PETERSON L M, ANDERSON L R. Pullout resistance of welded wire mats embedded in soil[R]. Logan: Utah State University, 1980. [11] JEWELL R A, MILLIGAN G W E, SARSBY R W. Interaction between soil and geogrids[C]//Proceedings Symposium on Polymer Grid Reinforcement in Civil Engineering. London: Thomas Telford Limited, 1984: 18-30. [12] CHAI J C. Interaction between grid reinforcement and cohesive-frictional soil and performance of reinforced wall/embankment on soft ground[D]. Bangkok: Asian Institute of Technology, 1992. [13] BERGADO D T, CHAI J C, MARUI H. Prediction of pullout resistance and pullout force displacement relationship for inextensible grid reinforcements[J]. Soils and Foundations. 1996, 36(4): 11-22. [14] BERGADO D T, MACATOL K C. Interaction of lateritic soil and steel grid reinforcement[J]. Canadian Geotechnics, 1993, 30(2): 376-384. [15] 中华人民共和国住房和城乡建设部. 建筑基坑支护技术规程:JGJ 120—2012[S]. 北京: 中国建筑工业出版社, 2012. [16] 陈榕, 郝冬雪, 栾茂田. 土工格栅横肋与纵肋加筋机理研究[J]. 建筑材料学报, 2013, 16(3):544-548. [17] 蔡春, 张孟喜, 赵岗飞. 带加强肋单向土工格栅的拉拔试验[J]. 岩土力学, 2012, 33(1): 57-63,68.
点击查看大图
计量
- 文章访问数: 110
- HTML全文浏览量: 21
- PDF下载量: 1
- 被引次数: 0