SHAKING TABLE TESTS OF ULTRA-HIGH-VOLTAGE TRANSFORMER MODELS WITH NONLINEAR VIBRATION ISOLATION DEVICES
-
摘要: 基于非线性准零刚度理论进行了水平双向隔震装置设计,开展了安装非线性隔震装置的特高压变压器缩尺模型的地震模拟振动台试验研究。在加速度峰值为0.4 g、0.8 g、1.2 g和1.6 g试验中,采用隔震装置隔震后,作用于特高压变压器模型底部的地震波加速度峰值减小了61.53%~90.00%,隔震后地震波的频谱响应曲线得到降低,特别是在地震动能量大的低频范围内降低幅度显著;在加速度峰值为0.4 g和0.8 g对比试验中,安装隔震装置后特高压变压器高压套管最大应力分别减小了85.77%和91.75%,加速度和应变结果表明非线性隔震装置具有显著的隔震效果,并验证了非线性准零刚度理论在隔震设计中的有效性。Abstract: Based on the theory of nonlinear quasi-zero stiffness, the horizontal and bidirectional directional seismic isolators were desighed and a shaking test on scaled ultra-high-voltage(UHV) transformer models with vibration isolation device was conducted. The peak ground accelevation of 0.4 g, 0.8 g, 1.2 g and 1.6 g in the tests, when the seismic waves were isolated by seismic isolators, the peak ground acceleration of seismic waves acting on the bottom of the UHV transformer model was reduced by 61.53% to 90.00%, and the spectral response curves of seismic waves were reduced, especially in the low frequency range where the ground shaking energy was high. In the contrast tests of the peak acceleration of 0.4 g and 0.8 g, the maximum stress of high-voltage bushings of UHV transformers decreased by 85.77% and 91.75% as the isolation devices were installed. The results of acceleration and strain showed that the isolation devices had significant seismic isolation effect, and the effectiveness of the nonlinear quasi-zero stiffness theory in seismic isolation design was proven.
-
Key words:
- UHV transformer /
- seismic response /
- shaking table test /
- isolation device /
- scaled model
-
[1] 谢强,朱瑞元,屈文俊.汶川地震中500 kV大型变压器震害机制分析[J].电网技术,2011,35(3):221-226. [2] 孙宇晗,卢智成,刘振林,等.1 100 kV特高压套管地震模拟振动台试验[J].高电压技术,2017,43(12):4139-4144. [3] BELLORINI S,SALVETTI M,BETTINALI F,et al.Seismic Qualification of Transformer High Voltage Bushings[J].IEEE Transactions on Power Delivery,1998,13(4):1208-1213. [4] ANAGNOS T.Development of an Electrical Substation Equipment Performance Database for Evaluation of Equipment Fragilities[R].California:San Jose State University,1999. [5] WHITTAKER A S,FENVES G L,GILANI A S.Earthquake Performance of Porcelain Transformer Bushings[J].Earthquake Spectra,2004,20(1):205-223. [6] KOLIOU M,FILIATRAULT A,REINHORN A M.Seismic Response of High-Voltage Transformer-Bushing Systems Incorporating Flexural Stiffeners Ⅱ:Experimental Study[J].Earthquake Spectra,2013,29(4):1353-1367. [7] BENDER J,FARID A.Seismic Vulnerability of Power Transformer Bushings:Complex Structural Dynamics and Seismic Amplification[J].Engineering Structures,2018,162(5):1-10. [8] 刘如山,张美晶,王翔鹰,等.基于设防烈度和震害统计的变电站震害快速评估法[J].地震工程与工程振动,2012,32(5):152-159. [9] 朱瑞民,李东亮,齐立忠,等.变电站地震灾害分析与抗震设计[J].电力建设,2013,34(4):14-18. [10] 刘彦辉,谭平,周福霖,等.大型变压器的汶川震害及其隔震技术研究[J].广州大学学报(自然科学版),2014,13(6):36-41. [11] 陈传新,刘彦辉,贺瑞,等.考虑液-固耦合的大型超高压换流变压器地震响应研究[J].地震工程学报,2017,39(3):397-403. [12] 马国梁,朱瑞元,谢强,等.变压器-套管体系基础隔震振动台试验[J].高电压技术,2017,43(4):1317-1325. [13] 宋彧.相似模型试验原理[M].北京:人民交通出版社股份有限公司,2016. [14] 卢智成,代泽兵,孟宪政,等.特高压变电设备抗震振动台试验方法研究[J].建筑结构,2013,43(增刊1):1269-1272. [15] 尤红兵,张郁山,赵凤新.电气设备振动台试验输入的合理确定[J].电网技术,2012,36(5):118-124. [16] 国家电网有限公司.特高压瓷绝缘电气设备抗震设计及减震装置安装与维护技术规程:Q/GDW 11132-2013[S].北京:中国计划出版社,2014.
点击查看大图
计量
- 文章访问数: 92
- HTML全文浏览量: 19
- PDF下载量: 1
- 被引次数: 0