Effects of Jointed Rock Masses on Stability of Shield Tunnels Under Tunnelling and Ground Loss Rates
-
摘要: 为研究节理岩体对盾构隧道开挖稳定性和地层损失率的影响,以南昌某盾构隧道为研究对象,采用离散元软件UDEC建立数值模型,分析节理倾角对围岩变形和地表沉降的影响规律,通过拟合得到地层损失率,并将模拟值与实测值进行对比,研究节理间距、盾构隧道间距以及隧道埋深对地表沉降的影响规律。研究结果表明:盾构隧道围岩在节理面产生较大位移,节理倾角的存在导致隧道围岩产生偏压现象,节理倾角为60°、90°时容易失稳;当节理倾角为60°时,地表沉降取得最大值,当节理倾角为45°时,地表沉降取得最小值。通过拟合Peck曲线可知,该工程区段的地层损失率范围为0.658%~0.896%;地表沉降值与隧道埋深、隧道间距以及节理间距均成负相关。Abstract: To explore the influence of joint rock masses on the stability of tunnels under tunnelling and the ground loss rates, taking the tunnel in Nanchang as a research object, the numerical model was constructed by the discrete element software UDEC. The influence of inclined joint angles on surrounding rock deformation and subsidence was analyzed, and the ground loss rate was obtained by fitting. The simulated values were compared with the measured values in order to study the influence of joint spacing, shield tunnel spacing and tunnel buried depth on subsidence. According to the actual project, a large displacement of surrounding rock of the tunnel occurred at the joint surface, and the existence of dip angles led to the eccentric compression phenomenon of rock around the tunnel. When the dip angle was 60° and 90°, it was prone to lose stability. The maximum value of subsidence occurred when the dip angle was 60°, and the minimum value occured when the dip angle was 45°. According to the Peck curve, the ground loss rate of the project section ranged from 0.658% to 0.896%. The subsidence was in negative correlation with buried depth, tunnel spacing and joint spacing.
-
Key words:
- tunnel /
- dip angle /
- stability /
- subsidence /
- ground loss rate
-
[1] 许崇帮,夏才初,陈孝湘.基于节理精细化描述的隧道围岩变形破坏特征分析[J].岩石力学与工程学报,2011,30(10):1997-2003. [2] 袁冉,杨文波,余海岁,等.土体非共轴各向异性对城市浅埋土质隧道诱发地表沉降的影响[J].岩土工程学报,2018,40(4):673-680. [3] 杨忠民,张玉芳,李健,等.软弱围岩节理性质对隧道塌方范围影响研究[J].中国安全生产科学技术,2020,16(12):143-149. [4] 袁铁,李畅,申志军,等.节理对泥岩隧道稳定性影响分析[J].公路,2020,65(2):288-294. [5] 彭双喜.节理岩体隧道的稳定性分析及破坏机理[J].公路工程,2014,39(5):295-299. [6] 唐正东.陡倾节理地层大断面小净距地铁车站施工稳定性研究[D].重庆:重庆交通大学,2017. [7] 刘红兵.岩层倾角对层状岩体隧道稳定性影响分析[J].公路工程,2013,38(4):167-169,182. [8] 王永甫,唐晓松,郑颖人,等.岩体节理对隧道开挖稳定性影响的数值分析[J].岩土工程学报,2013(增刊2):207-211. [9] 许崇帮,夏才初,宋二祥.节理岩体中隧道围岩变形特征分析[J].岩石力学与工程学报,2012(增刊2):3566-3570. [10] 何长江,冯君,江南,等.节理特性对顺层隧道破坏模式及稳定影响分析[J].地下空间与工程学报,2020,16(2):599-607. [11] 韩煊,李宁,STANDING J R.Peck公式在我国隧道施工地面变形预测中的适用性分析[J].岩石力学,2007,28(1):23-28,35. [12] 丁智,王凡勇,魏新江.软土双线盾构施工地表变形实测分析与预测[J].浙江大学学报(工学版),2019,53(1):61-68. [13] 周健,陆丽君,贾敏才.基于FLAC2D数值方法的盾构隧道地层损失率研究[J].地下空间与工程学报,2014,10(4):902-907. [14] 白永学,漆泰岳,吴占瑞,等.砂卵石层盾构施工地层损失原因分析与施工对策[J].现代隧道技术,2012,49(3):54-61. [15] 王建秀,邹宝平,付慧仙,等.盾构地层损失与对应地面沉降计算的对比分析[J].铁道工程学报,2013(9):72-77. [16] 丁智,洪哲浩,冯丛烈,等.软土区双线盾构施工引起的土体变形及孔压研究[J].岩土工程学报,2020,42(8):1465-1473. [17] 包小华,章宇,徐长节,等.双线盾构隧道施工沉降影响因素分析[J].重庆交通大学学报(自然科学版),2020,39(3):51-60. [18] 邹飞,李海波,周青春,等.岩石节理倾角和间距对隧道掘进机破岩特性影响的试验研究[J].岩土力学,2012,33(6):1640-1646. [19] 袁长丰,袁子晋,刘世波,等.考虑节理几何特征的地表沉陷预计方法[J].采矿与工程学报,2014,31(4):620-623,630. [20] CUNDALL P A.A computer model for simulating progressive large scale movements in blocky rock systems[C]//Proceedings of the International Symposium Rock Fracture,ISRM.1971:1-8. [21] Itasca Consulting Group,Inc.UDEC (Universal distinct element code) user's manual version 3.0[R].Minneapoils:Itasca International,Inc.,1996. [22] JEAGER C.Rock mechanics and engineering[M].Cambridge:Cambridge University Press,1979. [23] PECK R B.Deep excavations and tunneling in soft ground[C]//Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering.1969:225-290. [24] 常士骠,张苏民.工程地质手册[M].4版.北京:中国建筑工业出版社,2007. [25] 刘波,陶龙光,丁城刚,等.地铁双隧道施工诱发地表沉降预测研究与应用[J].中国矿业大学学报,2006(3):356-361. [26] 陈春来,赵城丽,魏纲,等.基于Peck公式的双线盾构引起的土体沉降预测[J].岩土力学,2014,35(8):2212-2218.
点击查看大图
计量
- 文章访问数: 87
- HTML全文浏览量: 19
- PDF下载量: 1
- 被引次数: 0