Study on System Inference of Probability Distribution of Geotechnical Parameters
-
摘要: 借助数据挖掘技术,将岩土参数测试样本概率分布的选择系统化。选取了19组岩土参数测试样本,选择beta分布和正态信息扩散法作为推断岩土参数概率密度的两种方法。借助数据挖掘技术中的模糊C-均值聚类方法,根据岩土参数测试样本的数字特征值,将19组岩土参数测试样本归聚为4类,再根据每一类样本的分布规律,确定其概率密度函数的推断方法。对于波动性和离散性严重的测试样本,在采用正态信息扩散法推断其概率密度函数时,为解决窗宽选择问题,提出以均方差最小为目标,在窗宽的基础上,改变窗宽的大小,确定样本最优窗宽的方法。对于一组新的测试样本,根据数字特征值即可推断出测试样本的概率分布。Abstract: With the help of data mining technology, the selection of probability distribution of geotechnical parameters for test samples was systematized. 19 groups of geotechnical parameters for test samples were selected, the beta distribution and the normal information diffusion method were chosen as two methods to infer the probability density of geotechnical parameters. Based on the fuzzy C-means clustering method in data mining technology, 19 groups of geotechnical parameters for test samples were clustered into 4 categories according to the numerical eigenvalues of samples, and then the inference method of probability density functions was determined according to the distribution law of each category for samples. For test samples with serious fluctuation and discreteness, an optimal determination method on window width was proposed, the method took the minimum mean square error as the constraint goal and changed the size of window width on the basis of window width. When the probability density function was deduced by the normal information diffusion method, in order to determine window width, an optimal determination method on window width of samples by changing the width value of the window on the basis of the minimum mean square error was proposed. For a group of new test samples, it was probable to infer the density function of samples by the numerical eigenvalue.
-
[1] 陈旺旺,李典庆,唐小松,等.岩土参数概率分布的最大熵估计及边坡可靠度分析[J].岩土力学,2018,39(4):1469-1478. [2] 陈立周,何晓峰,翁海珊.工程随机变量优化方法设计:原理与应用[M]. 北京:科学出版社, 1997. [3] 孟庆山,雷学文.土工参数的统计方法及其工程应用[J].武汉冶金科技大学学报(自然科学版),1999(4):414-417. [4] 鲁燕儿,刘勇.岩体错动带岩土参数的Beta概率分布[J].地下空间与工程学报,2014,10(6):1250-1256. [5] LOW B K. Efficient probabilistic algorithm illustrated for a rock slope[J].Rock Mechanics and rock Engineering,2008,41(5):715-734. [6] 谭忠盛,高波,关宝树.隧道围岩抗剪强度指标c、tanφ的概率特征[J].岩土工程学报,1999,21(6):760-762. [7] 陈立宏,陈祖煜,刘金梅.土体抗剪强度指标的概率分布类型研究[J].岩土力学,2005(1):37-40,45. [8] 宫凤强,黄天朗,李夕兵.抗剪强度参数的最优概率分布函数推断方法[J].岩土工程学报,2016,38(增刊2):204-209. [9] 严春风,刘东燕,张建辉,等. 岩土工程可靠度关于强度参数分布函数概型的敏感度分析[J]. 岩石力学与工程学报, 1999, 18(1):36-39. [10] 宫凤强,黄天朗,李夕兵.岩土参数最优概率分布推断方法及判别准则的研究[J].岩石力学与工程学报,2016,35(12):2452-2460. [11] 邓建,李夕兵,古德生.岩石力学参数概率分布的信息熵推断[J].岩石力学与工程学报,2004,23(13):2177-2181. [12] CHEN W W, LI D Q, TANG X S. Probability distribution of shear strength parameters using maximum entropy principle for slope reliability analysis[J]. Rock and Soil Mechanics, 2018, 39(4):1469-1478. [13] 宫凤强, 李夕兵, 邓建. 小样本岩土参数概率分布的正态信息扩散法推断[J]. 岩石力学与工程学报, 2006(12):2559-2559. [14] 朱唤珍,李夕兵,宫凤强.大样本岩土参数概率分布的正态信息扩散推断[J].岩土力学,2015,36(11):3275-3282. [15] 黄天朗,宫凤强,伍婷玉.小样本岩土参数概率分布的正交多项式推断方法[J].工程力学,2017,34(8):85-95. [16] 蒋水华,李典庆.边坡可靠度更新的贝叶斯方法[M].北京:科学出版社,2019. [17] 张丽艳,李群湛,朱毅.新电气化铁路牵引负荷载预测[J].西南交通大学学报,2016,51(4):743-749. [18] 邓昇.南昌二号线地铁站岩土参数统计及雅苑路站基坑支护分析[D].南昌:南昌大学,2018. [19] 周泽华.岩土参数的联合分布识别与边坡稳定性动力可靠度分析[D].西安:西安理工大学,2017. [20] 宫凤强,侯尚骞,岩小明.基于正态信息扩散原理的Mohr-Coulomb强度准则参数概率模型推断方法[J].岩石力学与工程学报, 2013, 32(11):2225-2234. [21] 谢中华.MATLAB统计分析与应用[M].北京:北京航空航天大学出版社,2010. [22] 张文生,罗强,蒋良潍,等.基于可靠指标的土体强度参数变异特征及类型划分[J].岩石力学与工程学报,2017, 36(增刊2):4188-4204. [23] BEZDEK J C.Pattern recognition with fuzzy objective function algorithms[M].New York:Plenum Press,1981. [24] 黄崇福,王家鼎. 模糊信息优化处理技术及其应用[M]. 北京:北京航空航天大学出版社,1995. [25] 王新洲. 基于信息扩散原理的估计理论、方法及其抗差性[J]. 武汉测绘科技大学学报,1999,24(3):240-244.
点击查看大图
计量
- 文章访问数: 129
- HTML全文浏览量: 27
- PDF下载量: 1
- 被引次数: 0