中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑应变软化和冻融循环影响的粉质黏土修正双曲线模型

熊华涛

熊华涛. 考虑应变软化和冻融循环影响的粉质黏土修正双曲线模型[J]. 工业建筑, 2022, 52(4): 114-121. doi: 10.13204/j.gyjzG21050610
引用本文: 熊华涛. 考虑应变软化和冻融循环影响的粉质黏土修正双曲线模型[J]. 工业建筑, 2022, 52(4): 114-121. doi: 10.13204/j.gyjzG21050610
XIONG Huatao. An Improved Hyperbolic Model for Silty Clay Considering Strain Softening of Soil and Freeze-Thaw Cycle Effects[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 114-121. doi: 10.13204/j.gyjzG21050610
Citation: XIONG Huatao. An Improved Hyperbolic Model for Silty Clay Considering Strain Softening of Soil and Freeze-Thaw Cycle Effects[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 114-121. doi: 10.13204/j.gyjzG21050610

考虑应变软化和冻融循环影响的粉质黏土修正双曲线模型

doi: 10.13204/j.gyjzG21050610
详细信息
    作者简介:

    熊华涛,男,1978年出生,高级工程师。电子信箱:124967643@qq.com

An Improved Hyperbolic Model for Silty Clay Considering Strain Softening of Soil and Freeze-Thaw Cycle Effects

  • 摘要: 为反映超固结土应力-应变关系在冻融循环下的变化规律,提出一种可以同时考虑应变软化和冻融循环影响的修正双曲线模型。首先,基于Kondner双曲线模型和割线模量定义,通过变换双曲线模型函数得到无量纲化割线模量Es/Ei与无量纲化偏应力q/qmax关系的基本形式。根据压实粉质黏土的三轴试验结果,将应变软化前、后的Es/Ei-q/qmax关系分别用幂函数描述,建立了可反映应变软化的修正双曲线模型,包含c、φ、K、n、f、g、α、β等8个参数。然后,通过确定模型参数随冻融循环次数的变化规律来反映冻融循环对土的影响。结果表明:随着冻融循环次数的增加,峰值强度和黏聚力c逐渐减小,内摩擦角φ逐渐增大;初始割线模量Ei逐渐减小,相应地K逐渐减小,n值逐渐增大;fα反映应变软化时分段函数中割线模量的界限值,分别逐渐增大和减小;gβ反映应变软化前、后的Es/Ei-q/qmax曲线形状,g逐渐减小,而β呈波动特征,同时上述参数与冻融循环次数的回归关系均可以采用Logistic函数拟合。在此基础上,根据修正双曲线模型和模型参数的函数表达式,编制以围压和冻融循环次数为影响因子的计算程序,模型结果可以反映围压与冻融循环对土体力学性质的影响规律。
  • [1] MITCHELL J K,SOGA K.Fundamentals of soil behavior[M].New York:Wiley& Sons,2005.
    [2] 沈珠江.应变软化材料的广义孔隙压力模型[J].岩土工程学报,1997,19(3):14-21.
    [3] ANDERSLAND O B,LADDANYI B.Frozen ground engineering[M].New York:Wiley& Sons,Inc.,2004.
    [4] LIU J K,CHANG D,YU Q M.Influence of freeze-thaw cycles on mechanical properties of a silty sand[J].Engineering Geology,2016,210(5),23-32.
    [5] 常丹,刘建坤,李旭.冻融循环下粉砂土应力-应变归一化特性研究[J].岩土力学,2015,36(12):3500-3505.
    [6] 崔宏环,刘建坤,张立群,等.考虑冻融循环的季冻区高等级公路路基填土本构模型研究[J].岩土力学,2015,36(8):2228-2236.
    [7] 常丹,刘建坤,李旭.冻融循环下青藏粉砂土双屈服面本构模型研究[J].岩石力学与工程学报,2016,35(3):623-630.
    [8] 姚仰平,张丙印,朱俊高.土的基本特性、本构关系及数值模拟研究综述[J].土木工程学报,2012,45(3):127-150.
    [9] HASHIGUCHI K,CHEN Z P.Elastoplastic constitutive equations of soils with subloading surface and rotational hardening[J].Int.J.Numer.Anal.Meth.Geomech.,1998(22):917-927.
    [10] ASAOKA A,NAKANO M,NODA T.Elastoplastic behavior of structured overconsolidated soils[J].J Appl Mech,JSCE,2000(3):335-342.
    [11] 姚仰平,侯伟,周安楠.基于Hvorslev面的超固结土本构模型[J].中国科学E辑:技术科学,2007,37(11):1417-1429.
    [12] 黄茂松,扈萍,张宏博.考虑剪胀性和应变软化的粉细砂双屈服面本构模型[J].水利学报,2008,39(2):129-136.
    [13] LEE J H,SALGADO R,CARRARO J A H.Stiffness degradation and shear strength of silty sands[J].Canadian Geotechnical Journal,2004,41:831-845.
    [14] 沈珠江.结构性黏土的弹塑性损伤模型[J].岩土工程学报,1993,15(3):21-28.
    [15] 沈珠江.结构性黏土的非线性损伤力学模型[J].水利水运科学研究,1993(3):247-255.
    [16] 王立忠,赵志远,李玲玲.考虑土体结构性的修正邓肯-张模型[J].水利学报,2004(1):83-89.
    [17] DESAI C S,TOTH J.Disturbed state constitutive modeling based on stress-strain and nondestructive behavior[J].International Journal of Solids and Structures,1996,33(11):1619-1650.
    [18] 王常明,匡少华,王钢城,等.结构性土固结不排水剪特性的一种描述方法[J].岩土力学,2010,31(7):2035-2039.
    [19] FAHEY M,CARTER J P.A finite element study of the pressure meter test in sand using a nonlinear elastic plastic model[J].Canadian Geotechnical Journal,2011,30(2):348-362.
    [20] 王军,丁光亚,潘林有,等.静三轴试验中水泥土力学特性及本构模型研究[J].岩土力学,2010,31(5):1407-1412.
  • 加载中
计量
  • 文章访问数:  163
  • HTML全文浏览量:  35
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 网络出版日期:  2022-07-25

目录

    /

    返回文章
    返回