Experimental Study on Corrosion Resistance of Basalt Fiber Concrete Soaked in Compound Salt Solutions
-
摘要: 为探究南疆地区不同掺量玄武岩纤维混凝土的耐腐蚀性能,结合该地区的盐渍土壤环境,采用该地区既有结构所常用的强度等级C35混凝土,在混凝土中分别掺入体积掺量为0%、0.1%、0.2%、0.3%的玄武岩纤维,开展MgSO4+Na2SO4+NaCl复合盐溶液浸泡下玄武岩纤维混凝土的耐腐蚀性能试验研究,选取试件的相对质量和相对弹性模量为主要指标进行分析评价。研究结果表明:当玄武岩纤维掺量为0.3%时,试件的相对质量、相对弹性模量的波动幅度较其他掺量试件的波动幅度小,说明此时混凝土抗复合盐溶液侵蚀的性能得到增强;由试件的微观结构分析可知,混凝土在MgSO4+Na2SO4+NaCl复合盐溶液侵蚀下,其主要生成的产物为钙矾石和石膏,玄武岩纤维的掺入减少了腐蚀产物的生成,与其宏观指标变化具有一致性。Abstract: The corrosion resistance experiments of concrete with basalt fiber proportion of 0%, 0.1%, 0.2% and 0.3% were conducted, in which the conorete specimens were soaked in compound salt solutions of MgSO4 mixed with Na2SO4 and NaCl, to explore the corrosion resistance of concrete specimens with different basalt fiber proportion. Based on the saline soil environment of the Southern Xinjiang area, the concrete of strength grade C35 commonly used in the existing structures in the area was adopted. The relative masses and relative of elastic moduli of specimens were selected as the main indexes for analysis and evaluation. The results showed that the fluctuation range of the relative masses and the relative elastic moduli of concrete specimens with the basalt fiber of 0.3% were lower than those of other specimens, which indicated that the resistance of concrete to erosion of compound salt solutions was improved. The analysis for microstructure of specimens showed that the main production composition in concrete immersed in compound salt solutions of MgSO4 mixed with Na2SO4 and NaCl were ettringite and gypsum. The adding of basalt fibers reduced the generation of corrosion products, which was consistent with the change of its macroscopic indicators.
-
[1] 魏秀月.基于南疆气候特征的兵团小城镇规划方法研究:以三十八团小城镇为例[D].武汉:华中科技大学,2015. [2] 王成,葛广华,侯建国,等.南疆地区混凝土结构耐久性现状与影响因素研究[J].武汉大学学报(工学版),2017,50(3):447-453. [3] 赵燕茹,刘芳芳,白建文,等.玄武岩纤维混凝土抗盐冻性能试验研究[J].混凝土,2019(8):68-71. [4] 王利强.玄武岩纤维混凝土抗冻性能试验研究[D].呼和浩特:内蒙古工业大学,2014. [5] 张兰芳,王道峰.玄武岩纤维掺量对混凝土耐硫酸盐腐蚀性和抗渗性的影响[J].硅酸盐通报,2018,37(6):1946-1950. [6] 王振山,李浩炜,吴波,等.玄武岩纤维混凝土的耐碱腐蚀性及力学性能试验研究[J].应用力学学报,2019,36(5):1088-1095,1258-1259. [7] 刘瑶,刘云浩.玄武岩纤维混凝土耐久性能试验研究[J].山西建筑,2014,40(26):122-123. [8] 王振山,宗梦媛,赵凯,等.硫酸钠环境下玄武岩纤维混凝土耐腐蚀性能及力学性能试验研究[J].建筑结构,2020,50(20):118-123,37. [9] 王振山,邢立新,吴波,等.硫酸腐蚀下玄武岩纤维掺量对混凝土耐久性能影响研究[J].建筑结构,2020,50(15):91-95,46. [10] 解国梁,申向东,刘金云,等.短切玄武岩纤维对混凝土抗氯离子侵蚀性能的影响[J].复合材料科学与工程,2020(12):10-14. [11] WANG Z S, LI Y K, LU J L, et al. Research on corrosion characteristics and performance degradation of basalt fiber concrete under sodium magnesium sulfate corrosion environment[J]. Journal of Coastal Research, 2020, 111(S1):56-62. [12] 马凤华.改性玄武岩纤维混凝土的力学与变形性能及微观机理研究[J].山东农业大学学报(自然科学版),2020,51(3):542-546. [13] 杨智硕,张晔芝,叶梅新,等.超高强玄武岩纤维混凝土力学性能研究[J].建筑科学,2018,34(11):94-98. [14] 中华人民共和国住房和城乡建设部.普通混凝土配合比设计规程:JGJ 55-2011[S].北京:中国建筑工业出版社,2011. [15] 中华人民共和国住房和城乡建设部.普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082-2009[S].北京:中国建筑工业出版社,2009. [16] 王志杰,徐成,王嘉伟,等.玄武岩纤维长度对喷射混凝土力学性能影响规律研究[J].隧道建设(中英文),2020,40(增刊1):9-16. [17] 李德超,赵晨曦.玄武岩纤维混凝土基本力学性能研究[J].公路,2020,65(6):237-241. [18] 何海杰.兰州地区现场暴露普通混凝土耐久性试验研究及寿命预测[D].兰州:兰州理工大学,2013. [19] 王振山,李亚坤,韦俊,等.玄武岩纤维混凝土氯盐侵蚀行为及力学性能试验研究[J].实验力学,2020,35(6):1060-1070. [20] 向美玲.西安地区现场暴露混凝土耐久性试验研究及寿命预测[D].兰州:兰州理工大学,2014.
点击查看大图
计量
- 文章访问数: 115
- HTML全文浏览量: 11
- PDF下载量: 1
- 被引次数: 0