INFLUENCE OF ADDITIONAL Al-RIBS ON LONG-TERM STIFFNESS OF PRE-TENSIONED CONCRETE BEAM REINFORCED WITH PRESTRESSED FRP BARS
-
摘要: 长期黏结性能退化会导致复材筋与混凝土之间的不可控滑移问题,附加铝肋是提高黏结性能的有效方式。为研究铝肋对抑制预应力复材筋混凝土梁长期刚度退化的作用,设计制作了6个试件,依次开展了短期和长期加载试验。通过对比梁端部无铝肋的试件,综合研究了铝肋对长期挠度、复材筋滑移和裂缝发展的影响规律。结果表明:附加铝肋能够显著抑制构件长期挠度的发展,使预应力复材筋混凝土梁保持良好的长期性能;设置了短铝肋(SA)和长铝肋(LA)的试件,相较于无铝肋试件,最大滑移分别减少了81.3%和86.7%,筋材滑移得到有效抑制;无铝肋试件近固定端裂缝宽度增加了323.53%,远大于有铝肋试件,附加铝肋对剪跨区混凝土裂缝发展的抑制效果明显。Abstract: Degradation of long-term bonding performance will cause uncontrollable slippage between FRP bars and concrete. The additional Al-ribs are effective ways to improve bonding performance. In order to study the effect of Al-ribs on restraining the long-term stiffness degradation of prestressed concrete beams reinforced with FRP bars, 6 specimens were designed and fabricated, and short-term and long-term loading tests were carried out in sequence. By comparing the specimens without Al-ribs at the beam ends, the influence of Al-ribs on long-term deflection, slippage of FRP bars and development of crack width was comprehensively studied. The results showed that the additional Al-ribs could significantly inhibit the development of long-term deflection of the members, so that the prestressed concrete beams reinforced with FRP bars maintained good long-term performance. The maximum slippage of the specimens with short Al-ribs(SA) and long Al-ribs(LA) was reduced by 81.3% and 86.7%, respectively, and the slippage of the ribs was significantly suppressed. The crack width near the fixed end of the specimens without Al-ribs was increased by 323.53%, which was much larger than that of the specimens with Al-ribs. The additional Al-ribs had a significant effect on restraining the development of concrete cracks in the shear span area.
-
Key words:
- pre-tensioned prestress /
- FRP bar /
- additional Al-rib /
- long-term stiffness
-
[1] 尹世平, 华云涛, 徐世烺.FRP配筋混凝土结构研究进展及其应用[J].建筑结构学报, 2021, 42(1):134-150. [2] SEN R, MULLINS G.Application of FRP Composites for Underwater Piles Repair[J].Compos.Part B:Eng., 2007, 38(5/6):751-758. [3] 叶列平, 冯鹏.FRP在工程结构中的应用与发展[J].土木工程学报, 2006(3):24-36. [4] 于钦鹏.折线先张法预应力混凝土T梁受力性能及工程应用研究[D].哈尔滨:哈尔滨工业大学, 2019. [5] 薛伟辰, 郑乔文, 杨雨.黏砂变形GFRP筋黏结性能研究[J].土木工程学报, 2007(12):59-68. [6] 郑乔文, 薛伟辰.粘砂变形GFRP筋的粘结滑移本构关系[J].工程力学, 2008(9):162-169. [7] 黎健.复材筋附加肋的成型方法及对锚固性能的影响研究[D].南京:东南大学, 2017. [8] 苏伟强.先张法预应力复材筋混凝土梁受力性能试验研究[D].南京:东南大学, 2019. [9] ZHANG B, ZHU H, WU G, et al.Improvement of Bond Performance Between Concrete and CFRP Bars with Optimized Additional Aluminum Ribs Anchorage[J/OL].Construction and Building Materials.2020, 241.https://doi.org/10.1016/j.conbuildmat.2020.118012. [10] 胡修秀.复材筋嵌入式加固体系界面粘结性能研究[D].南京:东南大学, 2017. [11] LI T, ZHU H, WANG Q, et al.Experimental Study on the Enhancement of Additional Ribs to the Bond Performance of FRP Bars in Concrete[J].Construction and Building Materials, 2018, 185(10):545-554. [12] WANG Q, ZHU H, LI T, et al.Bond Performance of NSM FRP Bars in Concrete with an Innovative Additional Ribs Anchorage System:An Experimental Study[J].Construction and Building Materials, 2019, 207(5):572-584. [13] WANG Q, LI T, ZHU H, et al.Bond Enhancement for NSM FRP Bars in Concrete Using Different Anchorage Systems[J/OL].Construction and Building Materials.2020, 246.https://doi.org/10.1016/j.conbuildmat.2020.118316. [14] 黎健, 李婷, 朱虹, 等.附加肋提升复材筋锚固性能的试验研究[J].南京工业大学学报(自然科学版), 2017, 39(5):51-56. [15] 苏伟强, 李婷, 朱虹, 等.钢丝网砂浆层和附加肋提升嵌入式复材筋锚固性能试验研究[J].东南大学学报(自然科学版), 2018, 48(4):692-698. [16] 郭小农, 沈祖炎, 李元齐, 等.国产结构用铝合金材料本构关系及物理力学性能研究[J].建筑结构学报, 2007, 28(6):110-117. [17] ZOU P X W.Long-Term Properties and Transfer Length of Fiber-Reinforced Polymers[J].Journal of Composites for Construction, 2003, 7(1):10-19. [18] 中国冶金建设协会.纤维增强复合材料建设工程应用技术规范:GB 50608-2010[S].北京:中国计划出版社, 2011.
点击查看大图
计量
- 文章访问数: 127
- HTML全文浏览量: 13
- PDF下载量: 8
- 被引次数: 0