Safety Assessment and Optimization of High-Voltage Transmission Towers Affected by Blasting Vibration of Adjacent Outlet Tunnel Based on Infinite Element Boundary
-
摘要: 以周边临近多条高压输电铁塔且采用钻爆法施工的某拟建输水隧洞为工程依托,建立了爆破动荷载下基于无限元边界的动力数值计算模型,借此研究了高压输电铁塔的动力响应特征与隧洞围岩振速的衰减规律,并结合相应规范对拟订爆破施工方案予以评估与优化。研究结果表明,无限元边界可较好地反映爆破能量向半无限介质传播的真实情况,避免其在计算域内往复震荡;在爆破荷载作用下,隧洞围岩合振速随距爆破中心点距离的增加大致呈指数级衰减。基于相应规范选取了以2.0 cm/s的峰值振动速度为安全判定标准,借此确定了三种拟订爆破施工方案的临界安全距离,进一步根据输水隧洞围岩工程特性与高压输电铁塔的相对位置关系,明确并优化了三种爆破施工方案在该输水隧洞中的分区施工范围。Abstract: An outlet tunnel adjacent to multiple high-voltage towers will be constructed by borehole-blasting method. Based on this project a dynamic numerical calculation model with infinite element boundary under blasting dynamic load was established. The characteristics of the dynamic response for high-voltage transmission towers were studied, and the attenuation law of the surrounding rock vibration velocity was also discussed. Then the proposed construction schemes were evaluated and optimized in accordance with the corresponding specifications. The research results showed that the infinite element boundary could better reflect the actual situation of the blasting energy propagating to the semi-infinite medium and avoid oscillations in the computing domain. Under the action of the blasting load, the resultant vibration velocity of the surrounding rock decreased with the increase of the distance from the blasting center. Based on the corresponding specifications, a 2.0 cm/s peak vibration velocity was selected as the safety criterion, and the critical safety distances of the three proposed blasting construction schemes were determined. Furthermore, in consideration of the surrounding rock engineering characteristics of the outlet tunnel and the relative position of the high-voltage tower, the respective working area for the three blasting construction schemes was clarified and optimized.
-
Key words:
- high-voltage tower /
- blasting vibration /
- infinite element /
- safety assessment /
- optimization design
-
[1] 邓铭江. 深埋超特长输水隧洞TBM集群施工关键技术探析[J]. 岩土工程学报, 2016, 38(4):577-587. [2] 侯靖, 张春生, 单治钢. 锦屏二级水电站深埋引水隧洞岩爆特征及防治措施[J]. 地下空间与工程学报, 2011(6):209-215. [3] 田力, 李灵聚. 双层柱面网壳结构在地下隧道内爆炸冲击下的动力响应分析[J]. 振动工程学报, 2011, 24(5):482-490. [4] XIA X, LI H B, LI J C, et al. A case study on rock damage prediction and control method for underground tunnels subjected to adjacent excavation blasting[J]. Tunneling and Underground Space Technology, 2013(35):1-7. [5] 邹玉君, 严鹏, 刘琳, 等. 白鹤滩水电站坝肩边坡爆破振动对周边民房影响评价及控制[J]. 振动与冲击, 2018, 37(1):248-258. [6] 余顺, 丁浩, 郭军, 等. 下穿高压铁塔的大跨小净距隧道控制爆破技术研究[J]. 公路交通技术, 2013(3):125-129. [7] 阳军生, 杨元洪, 晏莉, 等. 大断面隧道下穿既有高压输电铁塔施工方案比选及其应用[J]. 岩石力学与工程学报, 2012, 31(6):1184-1191. [8] AINALIS D, KAUFMANN O, TSHIBANGU J P, et al. Modelling the source of blasting for the numerical simulation of blast-induced ground vibrations:a review[J]. Rock Mechanics and Rock Engineering, 2017, 50(1):171-193. [9] LYSMER J,KULEMEYER R L.Finite dynamic model for infinite media[J].Journal of the Engineering Mechanics Division, 1969, 95(4):859-877. [10] DEEKS A J, RANDOLPH M F. Axisymmetric time-domain transmitting boundaries[J]. Journal of Engineering Mechanics, 1994, 120(1):25-42. [11] HIBBITT D, KARLSSON B, SORENSEN P. ABAQUS theory manual and analysis user's manual[R]. Pawtucket, USA:Sorensen Inee., 2002. [12] 戚玉亮, 大塚久哲. ABAQUS动力无限元人工边界研究[J]. 岩土力学, 2014(10):3007-3012. [13] 孙海峰, 景立平, 孟宪春, 等. ABAQUS中动力问题边界条件的选取[J]. 地震工程与工程振动, 2011, 31(3):71-76. [14] 王明年,潘晓马,张成满,等.邻近隧道爆破振动响应研究[J].岩土力学,2004,25(3):412-414. [15] 国家市场监督管理总局.爆破安全规程:GB 6722-2014[S].北京:中国标准出版社,2014.
点击查看大图
计量
- 文章访问数: 76
- HTML全文浏览量: 4
- PDF下载量: 3
- 被引次数: 0