Research on a Detection Method for Loosening of High-Strength Bolts Based on Image Recognition Techniques
-
摘要: 针对钢桥高强度螺栓人工批量巡检效率低、接触传感设备成本高昂的问题,提出了一种基于图像识别的高强度螺栓松动检测方法。利用螺栓角点位置识别算法对螺栓图像样本进行白色掩膜构建、掩膜小型噪点剔除和感兴趣区域分割等处理,确定螺栓角点位置坐标,结合相机成像相似映射原理推算螺栓松动角度,进而根据螺栓松动角度评估预紧力损失。对不同型号螺栓在不同水平视距下旋转10°、20°、30°采集样本,并将其导入算法进行试验验证。结果表明,基于该方法的螺栓松动角度检测准确率达90%以上,满足工程检测要求,并能够有效评估高强度螺栓预紧力损失。Abstract: Aiming at the low efficiency of manual batch inspection for high-strength bolts steel bridge and the high cost of contact sensing equipment, a detection method for the loosening of high strength bolts based on image recognition was proposed. Through the recognition algorithm for the position of bolt corner, the bolt pattern samples were processed by constructing white mask, removing small noise and segmenting ROI of the region of interest to determine the position coordinates of bolt corner. The bolt loosening angle was calculated by using the camera imaging similarity mapping principle, and the preload loss was evaluated according to the relation between the loosening angle and the preload. Then specimens were collected by rotating 10°, 20°, and 30°of different types of bolts at different horizontal viewing angles, and inputed them into the algorithm for experimental verification.The results showed that the accuracy of bolt looseness detection based on the method was over 90%, which could meet the requirements of engineering inspection and effectively evaluate the loss of preload of high-strength bolts.
-
Key words:
- loosening of bolt /
- algorithm /
- images /
- feature points
-
[1] 虞薇芳.主次梁承压型高强度螺栓连接节点受力性能研究[D].武汉:武汉理工大学,2009. [2] 王涛,罗毅,刘绍鹏,等.基于压电主动传感方式的螺栓松动检测实验研究[J].传感技术学报,2013,26(8):1059-1063. [3] 唐超.基于PZT阻抗法的钢结构桥梁高强度螺栓损伤监测试验研究[D].长沙:长沙理工大学,2017. [4] 陈佳雷.基于压电陶瓷智能垫片的海洋结构螺栓松动监测研究[D].大连:大连理工大学,2019. [5] 李宇宏.基于深度学习的路面病害自动检测及评估方法研究[D].苏州:江苏大学,2020. [6] 刘鹏.基于激光投射和图像识别的深基坑位移监测方法研究[D].大连:大连理工大学,2019. [7] 王达磊,彭博,潘玥,等.基于深度神经网络的锈蚀图像分割与定量分析[J].华南理工大学学报(自然科学版),2018,46(12):121-127,146. [8] PARK J H, HUYNH T C, CHOI S H, et al. Vision-based technique for bolt-loosening detection in wind turbine tower[J]. Wind Struct, 2015,21(6):709-726. [9] CHA Y J, YOU K, CHOI W. Vision-based detection of loosened bolts using the hough transform and support vector machines[J]. Autom. Constr, 2016,71:181-188. [10] RAMANA L,CHOI W,CHA Y J.Automated vision-based loosened bolt detection using the cascade detector[J].Sensors and Instrumentation,2017(5):23-28. [11] ZHAO X F,ZHANG Y,WANG N.Bolt loosening angle detection technology using deep learning[J].Structural Control and Health Monitoring,2019,26(1):1-14. [12] 李健,丁小奇,陈光,等.基于改进高斯滤波算法的叶片图像去噪方法[J].南方农业学报,2019,50(6):1385-1391. [13] 周雪梅,潘多.一种基于形态学结构元素优化的车牌快速检测算法[J].西南师范大学学报(自然科学版),2020,45(7):130-136. [14] 山本晃.螺纹联接的理论与计算[M].郭可谦,高素娟,译.上海:上海科学技术文献出版社, 1984:45-52. 期刊类型引用(7)
1. 刘成沛,石培鑫,王锐锋,谢丰源,林群煦. 多方位螺栓松动量视觉检测方法研究. 制造业自动化. 2025(02): 75-85 . 百度学术
2. 姚志东,陈志华,刘红波,卢佳祁. 钢结构工程高强度螺栓微小松动视觉检测方法研究. 中国公路学报. 2024(02): 125-141 . 百度学术
3. 赵丽洁,刘思杨,王昊. 基于机器视觉的钢结构螺栓群松动批量角度识别. 机械设计与研究. 2024(02): 214-219 . 百度学术
4. 徐建平,刘桂芬,王杨,程潜. 基于深度学习的钢桥螺栓关键点识别方法. 市政技术. 2024(09): 39-47+89 . 百度学术
5. 汪传民,杨明超,苏宇航. 时序数据分析在塔吊螺栓松动监测系统中的应用. 内燃机与配件. 2023(10): 92-94 . 百度学术
6. 王前选,王锐锋,李虎,曹航,刘成沛. 轨道车辆螺栓松动量与预紧力视觉检测方法研究. 铁道科学与工程学报. 2023(09): 3511-3524 . 百度学术
7. 霍林生,李宏男,杨卓栋,周靖. 钢结构螺栓连接松动智能检测及监测技术的研究进展. 工业建筑. 2023(09): 10-17 . 本站查看
其他类型引用(4)
-

计量
- 文章访问数: 554
- HTML全文浏览量: 23
- PDF下载量: 11
- 被引次数: 11