SEISMIC DYNAMIC RESPONSE ANALYSIS OF TWIN TUNNELS WITH DIFFERENT LINING STIFFNESS IN MOUNTAINS
-
摘要: 为研究不同衬砌刚度下的山岭双洞隧道地震响应情况,采用波动理论结合数值计算的方法,以雅泸高速公路勒不果喇吉隧道为背景,计算并分析不同衬砌刚度下双洞隧道的地震响应。采用波动散射理论分析P波作用下双洞圆形隧道衬砌的动应力系数级数解,波动分析结果表明:双洞圆形隧道衬砌的动应力系数与双洞隧道的间距、衬砌刚度以及P波频率均有重要关系。双洞隧道间距越小,衬砌刚度越大,圆形隧道衬砌动应力系数越大;平面入射P波频率越高,双洞圆形隧道衬砌动应力系数越小。基于FLAC3D分析软件建立了山岭双洞隧道地震响应三维数值分析模型,计算结果表明:刚性衬砌下隧道结构的地震响应明显高于柔性衬砌,说明柔性衬砌可以减弱隧道的地震动力响应,具有一定的减震作用,但柔性衬砌的地震响应位移高于刚性衬砌。数值分析结果与波动理论分析相吻合。Abstract: To study seismic responses of twin tunnels with different lining stiffness, the seismic responses of twin tunnels with different lining stiffness was calculated and analyzed by the wave theory and combined with numerical calculation methods, taking the Leboguolaji tunnel of the Yalu Expressway as the background. The wave scattering theory was used to analyze the series solutions of dynamic stress coefficients for circular linings under the action of plane P-wave. The wave analysis results showed that the dynamic stress coefficient of circular linings for twin tunnels had important relation with the distance between twin tunnels, lining stiffness and P-wave frequency. The smaller the distance between the twin tunnels and the larger the lining stiffness, the larger the dynamic stress coefficient of the twin tunnels linings.The higher the plane P-wave frequency, the smaller the dynamic stress coefficient of the twin tunnel linings. Based on FLAC3D analysis software, the analysis model of numerical seismic responses for twin tunnels in mountains was constructed. The calculation results showed that the seismic responses of the tunnel structure with the rigid lining was significantly higher than that of the flexible lining, which indicated that the flexible lining could weaken the seismic dynamic responses of tunnels and had a certain shock absorption effect, but the seismic displacement of the flexible lining was higher than that of the rigid lining. The numerical results were in good agreements with the wave theory.
-
Key words:
- lining stiffness /
- twin tunnels /
- seismic response
-
[1] 潘昌实.隧道及地下结构物抗震问题的研究概况[J]. 世界隧道, 1996(5):7-16. [2] HIROOMI I. Damage and Restoration of Daikai Station of Kobe Rapid Transit Railway[J]. Japanese Railway Engineering, 1997(137):24-27. [3] MASARU T.Damage Done by the Great Earthquake Disaster of the Hanshin-Awaji District to the Kobe Municipal Subway System and Restoration Works of the Damage[J]. Japanese Railway Engineering, 1997(137):19-23. [4] 崔光耀, 伍修刚, 王明年, 等.汶川8.0级大地震公路隧道震害调查与震害特征[J]. 现代隧道技术, 2017, 54(2):9-16. [5] 朱永全. 109号隧道地震灾害与加固处理的思考[J]. 国防交通工程与技术, 2008(4):1-4. [6] 中华人民共和国交通运输部.公路工程抗震规范:JTG B02-2013[S]. 北京:人民交通出版社, 2014. [7] 中华人民共和国建设部.铁路工程抗震设计规范:GB 50111-2006[S]. 北京:中国铁道出版社, 2006. [8] 中华人民共和国交通运输部.公路隧道设计规范:JTG 3370.1-2018[S]. 北京:人民交通出版社, 2019. [9] 汪树华, 高波, 王英学, 等. 高烈度地震区山岭隧道动力响应规律及抗震措施分析研究[J]. 现代隧道技术, 2013, 50(5):60-67, 74. [10] 江学良, 连鹏远, 杨慧, 等.浅埋偏压小净距隧道大型振动台实验研究[J]. 应用力学学报, 2017, 34(3):456-463. [11] 王泽军, 陈铁林, 崔光耀, 等. 强震区隧道洞口软硬岩交接段围岩注浆抗震措施效果分析[J]. 中国地质灾害与防治学报, 2018, 29(4):96-102. [12] 崔光耀, 王李斌, 王明年, 等. 强震区隧道软岩洞口段刚柔并济抗减震措施模型试验研究[J]. 振动工程学报, 2019, 32(1):29-36. [13] 崔光耀, 王雪来, 王明年. 隧道软岩洞口段纤维混凝土衬砌抗震性能研究[J]. 振动、测试与诊断.2020, 40(4):650-655, 819. [14] 任磊, 牛斌, 郭婷, 等. 柔性比对隧道地震动力响应影响研究[J]. 现代隧道技术, 2020, 57(4):67-73. [15] 丁祖德, 资昊, 计霞飞, 等.考虑衬砌劣化的山岭隧道地震易损性分析[J]. 岩石力学与工程学报, 2020, 39(3):581-592. [16] 皇民.浅埋双洞隧道地震动力响应研究[D]. 成都:西南交通大学, 2009. [17] PAO Y H, MOW C C. Diffraction of Elastic Waves and Dynamic Stress Concentrations[M]. New York:Crane, Russak & Company Inc, 1973. [18] LEE V W. On Deformation Near Circular Underground Cavity Subjected to Incident Plane SH Waves[C]//Proceedings of the Application of Computer Methods in Engineering Conference. 1977:951-962. [19] LEE V W, TRIFUNAC M D. Response of Tunnels to Incident SH-Waves[J]. Journal of Engineering Mechanics, ASCE, 1979, 105:643-659. [20] LEE V W, KARL J. Diffraction of SV Waves by Underground, Circular, Cylindrical Cavities[J]. Soil Dynamics and Earthquake Engineering, 1992, 11:445-456. [21] LEE V W, KARL J. On Deformation Near a Circular Underground Cavity Subjected to Incident Plane P Waves[J]. European Journal of Earthquake Engineering, 1993(1):29-36. [22] 梁建文, 张浩, LEE V W. 平面P波入射下地下洞室群动应力集中问题解析解[J]. 岩土工程学报, 2004, 26(6):815-819. [23] 梁建文, 张浩, LEE V W.地下双洞室在SV波入射下动力响应问题解析解[J]. 振动工程学报, 2004, 17(2):132-140. [24] 赵淑红.时频分析方法及其在地震波数据处理中的应用[D]. 西安:长安大学, 2003. [25] 陈灯红, 彭刚, 姚艳华, 等.地震波时域数值优化研究及应用[J]. 世界地震工程, 2008, 24(4):130-135.
点击查看大图
计量
- 文章访问数: 106
- HTML全文浏览量: 19
- PDF下载量: 1
- 被引次数: 0