Seismic Performance Test and Finite Element Analysis of Monolithic Precast Shear Wall with Partially-Connected Vertical Distributed Steel Bars
-
摘要: 为研究竖向分布钢筋部分连接的装配整体式剪力墙的抗震性能,完成1个预制墙板部分分布钢筋采用预埋件焊接连接试件和1个预制墙板分布钢筋不连接试件的拟静力试验。试验结果表明:采用预埋件焊接连接试件裂缝分布均匀,滞回曲线相对饱满,承载力较高,抗震性能表现良好。采用ABAQUS软件对2榀试件进行有限元分析,得到试件的破坏形态、滞回曲线、骨架曲线且与试验结果吻合较好。研究竖向边缘构件纵筋配筋率、连接钢筋直径、高宽比、轴压比、预埋焊板数量及位置等参数对试件抗震性能的影响,结果表明:竖向边缘构件配筋率、高宽比、轴压比对墙体承载力影响较大;预制墙板内连接钢筋直径对墙体承载力影响较小;预制墙板底部两侧合理布置预埋件可有效提升墙体的承载力及延性。Abstract: In order to study the seismic performance of monolithic precast shear wall with partially-connected vertical distributed steel bars, quasi-static tests were performed on one precast wall panel with partically vertical distributed steel bars welded by embedded parts and one precast wall panel with non-connected distributed steel bars. The test results showed that the cracks of the specimen with vertical distributed steel bars welded by embedded parts were evenly distributed, the hysteresis curve was relatively full, the bearing capacity was high, and the seismic performance was good. The failure mode, hysteretic curve and skeleton curve of the two specimens were obtained by finite element analysis with ABAQUS software, and the simulation results were in good agreement with the experimental results. The effects of longitudinal reinforcement ratio, diameter of connecting bars, height-width ratio, axial compression ratio, number and location of embedded welding plates on the seismic performance of specimens were studied. The results showed that the reinforcement ratio, height-width ratio and axial compression ratio of vertical edge members had great influence on the bearing capacity of the wall. The diameter of the connecting steel bars in the precast wall panel had little influence on the bearing capacity of the wall. Reasonable arrangement of embedded parts on both sides of the bottom of the precast wall panel could effectively improve the bearing capacity and ductility of the wall.
-
[1] 黄炜,孙玉娇,张家瑞,等.装配式墙体结构新型连接技术研究现状[J].工业建筑, 2020, 50(7):181-189. [2] 郑永峰,郭正兴,张新,等.套筒内腔构造对钢筋套筒灌浆连接黏结性能的影响[J].建筑结构学报, 2018, 39(9):158-166. [3] XU G S, WANGA Z, WUA B, et al. Seismic performance of precast shear wall with sleeves connection based on experimental and numerical studies[J]. Engineering Structures, 2017, 150:346-358. [4] 张壮南,李姗珊,柳旭东,等.装配式剪力墙浆锚连接的受力性能试验研究[J].建筑结构学报, 2019, 40(2):189-197. [5] ZHU Z F, GUO Z X. Experimental study on emulative hybrid precast concrete shear walls[J]. KSCE Journal of Civil Engineering, 2016,21(1):329-338. [6] 潘广斌,蔡健,杨春,等.冷挤压套筒连接RC装配式剪力墙抗震性能试验研究[J].建筑结构学报, 2021, 42(5):111-120. [7] 焦安亮,张鹏,郜玉芬,等.装配式环筋扣合锚接混凝土剪力墙竖向连接钢筋锚固性能机理研究[J].工业建筑, 2019, 49(1):69-76. [8] 张锡治,马健,韩鹏,等.装配式剪力墙齿槽式连接受剪性能研究[J].建筑结构学报, 2017, 38(11):93-100. [9] 于海丰,郝孟天,麻建锁,等.采用预埋钢板-螺栓竖缝连接的装配式剪力墙拟静力试验及数值分析[J].工业建筑, 2020, 50(5):24-30. [10] 中华人民共和国住房和城乡建设部.装配式混凝土结构技术规程:JGJ 1-2014[S].北京:中国建筑工业出版社, 2014. [11] 中国工程建设标准化协会.竖向分布钢筋不连接装配整体式混凝土剪力墙结构技术规程:T/CECS 795-2021[S].北京:中国建筑工业出版社, 2021. [12] 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社, 2015. [13] 李刚.装配整体式低轴压比混凝土剪力墙结构抗震性能研究[D].北京:中国建筑科学研究院, 2016. [14] XU L H, HUANG L, CHI Y, et al. Tensile behavior of steel-polypropylene hybrid fiber-reinforced concrete[J]. ACI Materials Journal, 2016, 113(2):219-229. [15] 吴东岳.浆锚连接装配式剪力墙结构抗震性能评价[D].南京:东南大学, 2016. [16] 赵勇,李锐,王晓锋,等.大直径高强钢筋套筒灌浆连接预制柱抗震性能试验研究[J].土木工程学报, 2017, 50(5):27-35. [17] 江永涛.新型装配式混凝土墙抗震性能试验及正截面受弯承载力研究[D].西安:西安建筑科技大学, 2015.
点击查看大图
计量
- 文章访问数: 191
- HTML全文浏览量: 22
- PDF下载量: 17
- 被引次数: 0