Stability Analysis on Foundation Treatment for a Transverse Karst Cave in Guiyang
-
摘要: 岩溶地基的稳定性是地面建筑安全的重要保证。以贵州南明区某高层建筑的巨型溶洞处理为例,采用结构力学近似法和有限元分析法分析建筑荷载下溶洞顶板稳定性。通过数值模拟软件FLAC3D建立不同填充材料及填充范围工况的计算模型,计算在建筑荷载下,不同填充材料和填充范围下溶洞顶板及地面的应变场和应力场特征。溶洞的填充材料分别是细石混凝土和碎石,填充范围包括全区域填充和建筑一侧的部分填充。对比分析了4种工况情况下,溶洞上覆地基变形的特征。与试测结果的对比表明:数值计算分析与现场监测数据吻合,复杂溶洞经处理后,在桩基荷载作用下地基稳定;细石混凝土的填充效果比碎石材料效果更佳,在保证建筑安全的基础上,部分填充的方案能为工程节省更多的成本。Abstract: The stability of karst foundation is an important guarantee for the safety of ground buildings. Taking an actual engineering of treatment for a giant karst cave under a high-rise building in Guizhou Province as an example, the stability for the roof subjected to building loads was analyzed used by the structural mechanics approximation method and finite element method. By the numerical simulation software FLAC3D, the calculation models of foundation with karst caves filled with different materials and ranges were constructed to calculate the characteristics of the strain field and stress field in the cave roof and ground under building loads. The materials filled in karst caves were fine aggregate concrete and crushed stone respectively, and the filling ranges included the whole void and the partial void in the side of the building. The deformation characteristics of overlying foundation in four working conditions were compared and analyzed. The results showed that the numerical analysis consonant with the actual monitoring data, and the treated foundation with complex karst cavities was stable under the action of pile loads, and the filling effect of fine aggregate concrete was better than that filled by gravel material. On the basis of ensuring the safety for the building, the partial filling scheme could save more cost for the project.
-
Key words:
- treatment for karst cave /
- foundation /
- stability /
- numerical analysis
-
[1] 罗孝芹.贵阳龙洞堡机场岩溶发育规律及控制因素研究[D].成都:成都理工大学.2017. [2] 雷金山.广州地铁隐伏型岩溶地基稳定性分析及充填处理技术研究[D].长沙:中南大学,2014. [3] 《工程地质手册》编写委员会.工程地质手册[S].北京:中国建筑工业出版社,1992. [4] 《岩土工程手册》编写委员会.岩土工程手册[S].北京:中国建筑工业出版社,1994. [5] WANG M C,HSIEH C W.Collapse load of strip footing above circular void[J].Journal of Geotechnical Engineering,1987,113(5):511-515. [6] 王建秀,杨立中,刘丹.等.覆盖型无充填溶洞薄顶板塌陷稳定性研究[J].中国岩溶,2000(1):67-74. [7] 程晔,曹文贵,赵明华.高速公路下伏岩溶顶板稳定性二级模糊综合评判[J].中国公路学报,2003,16(4):21-24. [8] 程宇,龙举,张霖.贵州省岩溶地基类型及其稳定性分析方法[J].勘察科学技术,2019(1):37-41. [9] 黎斌,范秋雁,秦凤荣.岩溶地区溶洞顶板稳定性分析[J].岩石力学与工程学报,2002,21(4):532-536. [10] 刘之葵,梁金城,朱寿增,等.岩溶区含溶洞岩石地基稳定性分析[J].岩土工程学报,2003,25(5):629-633. [11] 马凤山,卢蓉,郭捷,等.金川二矿区大体积充填体变形的三维数值模拟[J].工程地质学报,2019,27(1):14-20. [12] 张小刚,刘宁,刘洪阳,等.基于FLAC3D数值模拟的深井软岩巷道稳定性及支护方案设计研究[J].有色金属,2020(5):19-25. [13] 韩常领,夏才初,徐晨,等.软岩隧道的超前导洞施工位置优化数值分析[J].地下空间与工程学报,2020,16(1):264-269. [14] 于林弘,颜嘉良,于晓静,等.基于FLAC3D的岩溶土洞演化及数值模拟分析[J].地下水,2020,42(4):55-57. [15] 王睿,孟召平,谢晓彤,等.巨厚松散层下防水煤柱合理留设及其数值模拟[J].煤田地质与勘探,2011,39(1):31-35. [16] 柳军修,尹振宇,杨杰,等.结构性黏土边界面模型在FLAC3D中的开发及隧道施工数值模拟[J].岩石力学与工程学报,2020,39(6):202-211. [17] YIN Z Y,HATTAB M,HICHER P Y.Multiscale modeling of a sensitive marine clay[J].International Journal for Numerical and Analytical Methods in Geomechanics,2011,5(15):1682-1702.
点击查看大图
计量
- 文章访问数: 105
- HTML全文浏览量: 27
- PDF下载量: 8
- 被引次数: 0