Experimental Research on Mechanical Properties of RC Columns Confined with Self-Compacting and Micro-Expanding Concrete Filled Circular Steel Tube Under Axial Compression
-
摘要: 为了探究自密实微膨胀混凝土填充圆钢管(SMCFCST)约束钢筋混凝土(RC)柱的轴压性能,设计并制作了8根约束柱和1根无约束RC柱,并对其进行轴压试验。试验参数包括钢管厚度、自密实微膨胀填充混凝土强度、填充混凝土类型和初始轴压力。记录试件破坏模式和加载数据,并绘制相应的荷载-竖向变形曲线和荷载-应变曲线。结果表明:RC柱被SMCFCST约束后,其峰值荷载和延性均显著提高;随着钢管厚度增大,约束柱的峰值荷载显著增大;随着自密实微膨胀填充混凝土强度增大,约束柱的峰值荷载小幅增大;而填充混凝土类型和初始轴压力对约束柱峰值荷载的影响不明显。修改GB 50936-2014《钢管混凝土结构技术规范》公式,得到SMCFCST约束柱的轴压承载力预测公式。预测值与试验值比值的平均值为0.956,标准差为0.064。Abstract: To investigate the mechanical properties of RC columns confined with self-compacting and micro-expanding concrete filled circular steel tube (SMCFCST) under axial compression, 8 confined RC columns and 1 unconfined RC column were designed and fabricated, and an axial compressive test was conducted. The test parameters including the thickness of the steel tube, the strength of self-compacting and micro-expanding filling concrete, the type of the filling concrete and the magnitude of the initial axial pressure were considered. The failure modes of specimens and the loading data were recorded, while the load versus vertical deformation curves and the load-strain curves were depicted accordingly. The results showed that the peak loads and ductility of the RC columns were significantly improved after being confined by SMCFCST. The peak loads of the confined columns were apparently increased with the increase of the thickness of steel tube. The peak loads of the confined columns were slightly increased with the increase of the strength of self-compacting and micro-expanding filling concrete. However, the effects of the type of filling concrete and the magnitude of the initial axial pressure on the peak loads of the confined columns were negligible. The formula from Technical Code for Concrete Filled Steel Tubular Structures (GB 50936-2014) was modified to obtain the predictive formula of the bearing capacity of the SMCFCST confined columns under axial compression. The average value of the ratio of the predicted value to the test value was 0.956, and the standard deviation was 0.064.
-
[1] 郑新亮,谢毅,高爽. 腐蚀环境对钢筋混凝土桥墩的抗震性能影响分析[J]. 公路工程, 2019, 44(6):94-97, 146. [2] 苏俊省,王君杰,郭进,等.基于钢筋低周疲劳的桥墩地震易损性分析[J].同济大学学报(自然科学版),2016,44(1):29-36. [3] LIANG Y, LI L, MAO R, et al. Seismic response analysis of pier considering durability damage repair[J]. Advances in Civil Engineering, 2020, 2020:1-16. [4] 陈林,肖岩. 桥墩防车辆撞击研究综述[J]. 公路交通科技, 2012, 29(8):78-86. [5] 韩娟,方海,刘伟庆,等. 桥墩防船舶撞击研究概述[J]. 公路, 2013(10):60-66. [6] CHEN L, WU H, LIU T. Vehicle collision with bridge piers:a state-of-the-art review[J]. Advances in Structural Engineering, 2021, 24(2):385-400. [7] 曹兴,魏洋,李国芬,等. 钢筋混凝土桥墩加固与修复技术研究[J]. 施工技术, 2011, 40(15):60-64. [8] 魏保立,邓苗毅,董晓马. 桥梁加固用结构胶的制备与性能影响分析[J]. 公路交通科技, 2012, 29(7):91-96, 103. [9] HAILIL SEZEN M A, MILLER E A. Experimental evaluation of axial behavior of strengthened circular reinforced-concrete columns[J]. Journal of Bridge Engineering, 2011, 16(2):238-247. [10] 高献. 不同受荷条件下脱空缺陷对钢管混凝土构件的承载力和刚度的影响分析[J]. 工业建筑, 2019, 49(10):43-47. [11] 叶勇,李威,陈锦阳.考虑脱空的方钢管混凝土短柱轴压性能有限元分析[J].建筑结构学报,2015,36(增刊1):324-329. [12] 胡潇,钱永久. 圆形钢套管加固钢筋混凝土短柱的轴心受压性能[J]. 公路交通科技, 2013, 30(6):100-108. [13] 卢亦焱,龚田牛,张学朋,等. 外套钢管自密实混凝土加固钢筋混凝土圆形截面短柱轴压性能试验研究[J]. 建筑结构学报, 2013, 34(6):121-128. [14] LU Y Y, LIU Z Z, LI S, et al. Effect of the outer diameter on the behavior of square RC columns strengthened with self-compacting concrete filled circular steel tube[J]. International Journal of Steel Structures, 2019, 19(3):1042-1054. [15] 何岸,蔡健,陈庆军,等. 钢套管再生混凝土加固柱轴压试验[J]. 西南交通大学学报, 2018, 53(6):1187-1194. [16] HE A, CAI J, CHEN Q, et al. Axial compressive behaviour of steel-jacket retrofitted RC columns with recycled aggregate concrete[J]. Construction and Building Materials, 2017, 141:501-516. [17] 韩宇栋,张君,岳清瑞,等. 现代混凝土收缩研究评述[J]. 混凝土, 2019(2):1-12, 16. [18] LI C C, JIA F J. Preparation of shrinkage compensating concrete with HCSA expansive agent[J/OL]. IOP Conference Series:Materials Science and Engineering, 2017, 250(1). http://www.socolar.com/Article/Index?aid=100021452356&jid=100000011183.DOI: 10.1088/1757-899X/250/1/012037. [19] 薛华. 钢套管再生混凝土加固柱轴压力学性能研究[D]. 广州:华南理工大学, 2016. [20] 刘浪. 二次受力下圆形钢套管加固钢筋混凝土短柱轴心受压性能研究[D]. 成都:成都理工大学, 2016. [21] 王玉虎,卢亦焱,李伟捷,等. 加载方式对钢管自密实混凝土加固RC圆柱受力性能影响的研究[J]. 混凝土, 2020(2):33-37, 44. [22] HE A, CAI J, CHEN Q, et al. Behaviour of steel-jacket retrofitted RC columns with preload effects[J]. Thin-Walled Structures, 2016, 109:25-39. [23] 刘金升,钱永久. 钢管加固既有短柱桥墩轴压承载力计算研究[J]. 公路工程, 2016, 41(5):107-112. [24] 薛继锋,卢亦焱,梁鸿俊,等. 钢管自密实混凝土加固钢筋混凝土圆形短柱承载力研究[J]. 武汉大学学报(工学版), 2014, 47(6):769-773. [25] 中华人民共和国国家质量监督检验检疫总局.混凝土膨胀剂:GB/T 23439-2017[S]. 北京:中国标准出版社, 2017. [26] 刘劲,丁发兴,龚永智,等. 圆钢管混凝土短柱局压力学性能研究[J]. 湖南大学学报(自然科学版), 2015, 42(11):33-40. [27] ZHAO X, LIANG H, LU Y, et al. Size effect of square steel tube and sandwiched concrete jacketed circular RC columns under axial compression[J]. Journal of Constructional Steel Research, 2020, 166:105912.1-105912.22. [28] 中华人民共和国住房和城乡建设部.钢管混凝土结构技术规范:GB 50936-2014[S]. 北京:中国建筑工业出版社, 2014.
点击查看大图
计量
- 文章访问数: 96
- HTML全文浏览量: 5
- PDF下载量: 14
- 被引次数: 0