The Dynamic Model of Distribution Parameters for a Frame Structure by Base Isolation and the Regularity of Earthquake Responses
-
摘要: 基于分布参数体系并结合基础隔震框架结构的特点,介绍考虑非比例阻尼的基础隔震分布参数剪切型悬臂梁模型的建立及求解过程。通过此模型,研究固定支座、比例阻尼隔震和非比例阻尼隔震模型的动力特征,并采用振型分解时程分析方法,对比分部设计方法、比例阻尼隔震和非比例阻尼隔震下模型的响应。结果表明:复振型分解方法和实振型分解方法在求解隔震结构的动力特征方面差别较小;隔震层对高阶振型周期的影响有限,但可有效降低结构高阶振型的振型参与系数;分部设计方法与非比例阻尼方法计算的楼层剪力分布结果差异较小;采用包含隔震层的整体模型分析时,建议采用考虑非比例阻尼特征的复振型分解方法。Abstract: Based on the distributed parameter system and the characteristics of the base-isolated frame structure,the construction and solution process of the shear cantilever beam model with distributed parameter of base-isolated considering non-proportional damping were introduced, and the dynamic characteristics of fixed bearing, proportional damping isolation and non-proportional damping isolation models through the model were also studied. The modal decomposition time history analysis method was used to compare the response of the model under partial design method, proportional damping isolation and non-proportional damping isolation. The results showed that the complex mode decomposition method and the real mode decomposition method had few differences in solving the dynamic characteristics of the isolated structures. The isolation layer had limited influence on the period of high-order vibration modes, but it could effectively reduce the modal participation coefficient of high-order vibration modes. The differences between floor shear distribution calculated by the division design method and non-proportional damping method were small. When the overall model with the seismic isolation layer was adopted to analyzed seismic responses,the decomposition method of complex vibration modes considering the non-proportional damping characteristics was recomnended first.
-
[1] 朱宏平,周方圆,袁涌.建筑隔震结构研究进展与分析[J].工程力学,2014,31(3):1-10. [2] 侯杰,伍庶,戴靠山.基于非线性迭代的隔震结构反应谱分析方法研究及辅助分析软件开发[C]//2020年工业建筑学术交流会论文集(中册).北京:《工业建筑》杂志社,2020. [3] 中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB 50011-2010[S].北京:中国建筑工业出版社,2010. [4] 薛彦涛,巫振弘.隔震结构振型分解反应谱计算方法研究[J].建筑结构学报, 2015,36(4):119-125. [5] KELLY J M. Earthquake resistant design with rubber[M].2nd ed. London:Springer Verlag London Limited, 1997. [6] 陈华霆,谭平,彭凌云,等.复振型叠加方法合理振型数量的确定[J].建筑结构学报,2020,41(2):157-165. [7] 李中锡,周锡元.规则型隔震房屋的自振特性和地震反应分析方法[J].地震工程与工程震动, 2002, 22(2):33-41. [8] 刘文光,杨巧荣,周福霖.大高宽比隔震结构地震反应的实用分析方法[J].地震工程与工程振动, 2004,24(4):115-121. [9] 杜永峰,张迪,党育,等.基础隔震结构简化模型的振动参数识别[J].世界地震工程, 2001, 17(2):53-58. [10] 杜永峰,张尚荣,李慧.多级串联非比例阻尼隔震结构地震响应分析[J].西北地震学报, 2012, 34(4):319-323. [11] SKINNER R I, ROBISON W H, MCVERRY G H. An introduction to seismic isolation[M]. Chichester:John Wiley&Sons Ltd., 1993. [12] 刘平,李琪.基底隔震建筑的剪切梁动力模型[J].工程力学,1998(3):90-97. [13] 潘东辉,于国友,张德强.隔震高层结构的悬臂梁模型的地震反应研究[J].工程力学,2012,29(5):115-121. [14] 克拉夫R W,彭津J.结构动力学[M].王光远,译.北京:科学出版社,1981. [15] CRONIN D L. Approximation for determining harmonically excited response of non-classically damped system[J]. Journal of Engineering for Industry, 1976,98:43-47. [16] 周锡元,董娣,苏幼坡.非正交阻尼线性振动系统的复振型地震响应叠加分析方法[J].土木工程学报,2003(5):30-36,45. [17] The Federal Emergency Management Agency (EFMA). Quantification of building seismic performance factors:ATC-63[S]. Washington:FEMA, 2009.
点击查看大图
计量
- 文章访问数: 162
- HTML全文浏览量: 30
- PDF下载量: 17
- 被引次数: 0