中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4种结构用热断桥材料基本力学与热工性能试验

龚超 侯兆新 梁梓豪 吴兆旗 梁伟桥 方五军

龚超, 侯兆新, 梁梓豪, 吴兆旗, 梁伟桥, 方五军. 4种结构用热断桥材料基本力学与热工性能试验[J]. 工业建筑, 2022, 52(12): 66-71,165. doi: 10.13204/j.gyjzG21030909
引用本文: 龚超, 侯兆新, 梁梓豪, 吴兆旗, 梁伟桥, 方五军. 4种结构用热断桥材料基本力学与热工性能试验[J]. 工业建筑, 2022, 52(12): 66-71,165. doi: 10.13204/j.gyjzG21030909
GONG Chao, HOU Zhaoxin, LIANG Zihao, WU Zhaoqi, LIANG Weiqiao, FANG Wujun. Experimental Research on Mechanical and Thermal Properties of Four Insulating Materials for Heat Bridge Effect[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 66-71,165. doi: 10.13204/j.gyjzG21030909
Citation: GONG Chao, HOU Zhaoxin, LIANG Zihao, WU Zhaoqi, LIANG Weiqiao, FANG Wujun. Experimental Research on Mechanical and Thermal Properties of Four Insulating Materials for Heat Bridge Effect[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 66-71,165. doi: 10.13204/j.gyjzG21030909

4种结构用热断桥材料基本力学与热工性能试验

doi: 10.13204/j.gyjzG21030909
基金项目: 

国家重点研发计划项目(2017YFC0703807)。

详细信息
    作者简介:

    龚超,男,1981年出生,博士,教授级高级工程师。电子信箱:gongchao6330@163.com

Experimental Research on Mechanical and Thermal Properties of Four Insulating Materials for Heat Bridge Effect

  • 摘要: 热断桥连接技术可以有效解决钢结构外挑构件冷热桥问题,热断桥材料的选用是热断桥节点技术的核心,目前关于热断桥连接和热断桥材料的研究较少。通过调研,筛选出尼龙6、刚性聚氯乙烯、环氧树脂玻璃纤维和聚醚醚酮作为热断桥备选材料;针对以上4种材料进行了40个试件的压缩性能试验和12个试件的导热系数测定试验,获得了4种复合材料的压缩强度、压缩弹性模量、导热系数等物理性能指标;采用"最远点法"得到了材料的屈服点,利用Sherwood-Frost模型拟合得到了4种材料的受压本构模型;结合材料力学性能、热工性能和经济性,综合分析了4种材料作为热断桥材料的适应性。结果表明:尼龙6、刚性聚氯乙烯和聚醚醚酮试件呈延性破坏模式,环氧树脂玻璃纤维呈脆性分层破坏模式;尼龙6、刚性聚氯乙烯和聚醚醚酮三种材料的屈服强度分别为60.1,50.4,125.8 MPa,导热系数分别为0.175 5,0.142 4,0.231 8 W/(m·K);综合考虑力学性能、热工性能和经济性,环氧树脂玻璃纤维综合性能最好,尼龙6次之,刚性聚氯乙烯最低,聚醚醚酮由于成本过高,不适宜作为热断桥材料。
  • [1] 李彦伯. 剪力墙结构温度效应与热桥效应研究[D]. 西安:西安建筑科技大学, 2009.
    [2] 徐峰, 周爱东, 刘兰, 等. 建筑围护结构保温隔热技术应用[M]. 北京:中国建筑工业出版社, 2011.
    [3] 中华人民共和国住房和城乡建设部. 严寒和寒冷地区居住建筑节能设计标准:JGJ 26-2010[S]. 北京:中国建筑工业出版社, 2010.
    [4] 李佳. 绿色建筑节能设计中的围护结构保温技术[J]. 建材与装饰, 2020(15):83-84.
    [5] CLEARY D B, RIDDELL W T, CAMISHION N, et al. Steel connections with fiber-reinforced resin thermal barrier filler plates under service loading[J]. Journal of Structural Engineering, 2016, 142(11). DOI: 10.1061/(ASCE)ST.1943-541X.0001576.
    [6] LARBI A B, COUCHAUX M, BOUCHAIR A. Thermal and mechanical analysis of thermal break with end-plate for attached steel structures[J]. Engineering Structures, 2017, 131:362-379.
    [7] ALHAWARI A, MUKHOPADHYAYA P. Thermal bridges in building envelopes-an overview of impacts and solutions[J]. International Review of Applied Sciences and Engineering, 2018, 9(1):31-40.
    [8] GHAZI W K, SIMMLER H, FRANK T. Experimental and numerical thermal analysis of a balcony board with integrated glass fibre reinforced polymer GFRP elements[J]. Energy and Buildings, 2007, 39(1):76-81.
    [9] GOULOUTI K, CASTRO J D, KELLER T. Aramid/glass fiber-reinforced thermal break-thermal and structural performance[J]. Composite Structures, 2016, 136:113-123.
    [10] GOULOUTI K, DE CASTRO J, VASSILOPOULOS A P, et al. Thermal performance evaluation of fiber-reinforced polymer thermal breaks for balcony connections[J]. Energy and Buildings, 2014, 70:365-371.
    [11] 章炜. 典型有机建筑保温材料热解动力学行为特性研究[D]. 武汉:武汉理工大学, 2015.
    [12] 马鑫. 典型有机保温材料的热过程演化及火蔓延特性研究[D]. 合肥:中国科学技术大学, 2015.
    [13] 谭海平, 张虎, 田耿东. 外墙常用无机保温材料的应用及展望[J]. 四川建材, 2020, 46(3):16-17.
    [14] 李爽, 周玉琼. 民用建筑节能检测之常用外墙保温隔热材料检测分析[J]. 智能城市, 2020, 6(16):106-107.
    [15] 黄欢. 无机保温材料在建筑节能工程中的应用[J]. 江西建材, 2020(8):25-27.
    [16] 刘欢, 刘涛, 龙志凡. 常见的保温材料燃烧热值分析[J]. 建材与装饰, 2020(10):39-40.
    [17] 全国纤维增强塑料标准化技术委员会. 纤维增强塑料性能试验方法总则:GB/T 1446-2005[S]. 北京:中国标准出版社, 2005.
    [18] 全国纤维增强塑料标准化技术委员会. 纤维增强塑料压缩性能试验方法:GB/T 1448-2005[S]. 北京:中国标准出版社, 2005.
    [19] 全国绝热材料标准化技术委员会. 绝热材料稳态热阻及有关特性的测定防护热板法:GB/T 10294-2008[S]. 北京:中国标准出版社, 2005.
    [20] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的"屈服点"定义与讨论[J]. 工程力学, 2017, 34(3):36-46.
    [21] 郑休宁, 张德伟, 扈廷勇. PVC-U管材拉伸屈服点的确定[J]. 聚氯乙烯, 2012, 40(8):21-23.
    [22] 朱艳峰, 蔡丹阳, 黄窈婷. 城市地下PVC-U塑料排水管材本构试验研究[J]. 广东建材, 2019, 35(10):25-29.
    [23] 雷鹏. 聚乙烯拉伸应变速率的本构方程改进及运用[J].包装工程, 2019, 40(13):110-115.
    [24] SHERWOOD J A, FROST C C. Constitutive modeling and simulation of energy absorbing polyurethane foam under impact loading[J]. Polymer Engineering and Science, 1992, 32(16):1138-1146.
  • 加载中
计量
  • 文章访问数:  167
  • HTML全文浏览量:  21
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 网络出版日期:  2023-03-22

目录

    /

    返回文章
    返回