Study on Cementation Effect of Tailing Sand by Magnesium Oxide Combined with Microorganism or by MICP
-
摘要: 将氧化镁与微生物结合运用到尾矿砂固化中,并与微生物诱导碳酸盐沉淀(MICP)相对比,通过无侧限抗压强度和扫描电镜试验,探究尾矿砂初始含水率(范围在16%~25%)和氧化镁掺量(范围在6%~15%)以及MICP中尾矿砂初始含水率(范围在16%~25%)对固化效果的影响。结果发现,在氧化镁-微生物固化尾矿砂中,初始含水率越高,试样无侧限抗压强度越低;氧化镁掺量越多,强度越高;在MICP过程中,随着初始含水率的增加,试样强度先降低后增高,最低点的初始含水率为19%。Abstract: Magnesium oxide combined with microorganism was used to cement tailing sand, and a comparison between cementation effect of maguesium oxide combined with microorganism and microbial induced carbonate precipitation (MICP) was conducted. The effects of the initial moisture content (in the range of 16% to 25%) of tailing sand and the magnesium oxide content (in the range of 6% to 15%), and the initial moisture content (in the range of 16% to 25%) of tailing sand during MICP on cementation were explored by unconfined compressive strength and SEM tests. The results showed that in the process of cementation with magnesium oxide combined with microorganism, the higher the initial moisture content was, the lower the unconfined compressive strength was; and the more the magnesium oxide content was, the higher the strength was; and in MICP, with the increase of the initial moisture content, the strength of specimens first decreased and then increased, and the lowest initial moisture content was 19%.
-
Key words:
- magnesium oxide /
- microorganism /
- tailing sand /
- moisture content /
- unconfined compressive strength
-
[1] 陈溪海, 郭红仙, 程晓辉. 微生物矿化改善尾矿砂性质的试验研究[J]. 工业建筑, 2016, 46(6):94-98,176. [2] 王仪心, 米占宽. 尾矿坝溃坝安全风险分析评价方法[J].金属矿山, 2019(6):184-188. [3] HAMDAN N, KAVAZANJIAN JR E, RITTMANN B E, et al. Carbonate mineral precipitation for soil improvement through microbial denitrification[J]. Geomicrobiology Journal, 2016, 34(2):139-146. [4] HARRISON A J W. Reactive magnesium oxide cements:US7347896[P]. 2008-03-25. [5] 刘松玉, 李晨. 氧化镁活性对碳化固化效果影响研究[J]. 岩土工程学报, 2015, 37(1):148-155. [6] 蔡光华, 刘松玉, 曹菁菁. 活性氧化镁碳化加固粉土微观机理研究[J]. 土木工程学报, 2017, 50(5):105-113,28. [7] DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2008, 36(2):197-210. [8] LIANG J M, GUO Z Y, DENG L J, et al. Mature fine tailings consolidation through microbial induced calcium carbonate precipitation[J]. NRC Research Press, 2015, 42(11):975-978. [9] AL-THAWADI S. High strength in-situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria[D]. Perth:Murdoch University, 2008. [10] CHU J, STABNIKOV V, IVANOV V. Microbially induced calcium carbonate precipitation on surface or in the bulk of soil[J]. Geomicrobiology Journal, 2012, 29(6):544-549. [11] 钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6):1537-1548. [12] 刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1):1-14. [13] 吴创周, 楚剑, 成亮, 等. 微生物注浆地基处理技术研究进展[J]. 地基处理, 2020, 2(3):181-186. [14] 沈道健, 王照宇, 梅岭, 等. 微生物诱导碳酸钙沉淀加固地基技术研究进展[J]. 江苏科技大学学报(自然科学版), 2017, 31(3):390-398. [15] 孙潇昊, 缪林昌, 童天志, 等. 微生物沉积碳酸钙固化砂土试验研究[J]. 岩土力学, 2017, 38(11):3225-3230,3239. [16] 彭劼, 黄慕凡, 谢高强, 等. 微生物诱导碳酸钙沉积加固土体的注浆方法[J]. 河海大学学报(自然科学版), 2019, 47(3):259-264. [17] 吴超传, 郑俊杰, 赖汉江, 等. 微生物固化砂土强度增长机理及影响因素试验研究[J]. 土木与环境工程学报(中英文), 2020, 42(1):31-38. [18] 伍玲玲, 张志军, 喻清, 等. 微生物注浆改善某金属矿尾砂性质的试验研究[J]. 中国矿业大学学报, 2018, 47(6):1354-1359. [19] 黄涛, 方祥位, 张伟, 等. 活性氧化镁-微生物固化黄土试验研究[J]. 岩土力学, 2020, 41(10):3300-3306,3316.
点击查看大图
计量
- 文章访问数: 145
- HTML全文浏览量: 8
- PDF下载量: 0
- 被引次数: 0