Research on Seismic Performances of Concrete-Filled Thin-Walled High-Strength Q690 Steel Tubular Columns
-
摘要: 为研究薄壁高强钢管混凝土柱抗震性能,开展了超限径厚比下Q690薄壁高强圆钢管混凝土柱低周往复加载试验,分析了该类柱破坏形态、荷载-位移曲线、滞回耗能、刚度和荷载退化规律。基于钢材应力三轴度损伤效应建立了薄壁高强钢管混凝土柱有限元损伤模型,揭示了Q690薄壁高强钢管混凝土柱的损伤演化发展规律。研究结果表明:薄壁高强圆钢管混凝土柱破坏时钢管局部屈曲并断裂,核心混凝土被挤密压碎;侧移率1%~6%时荷载比维持在0.9以上,7%~8%侧移率时荷载退化率达17.4%~23.0%,滞回环较饱满,延性系数位于2.88~3.61区间,总体上该类柱具有良好的承载力和塑性变形能力;柱脚混凝土损伤破坏呈V形分布,高强钢管发生深度屈服行为,加大轴压比和径厚比增强了薄壁高强钢管混凝土柱断裂损伤发展趋势。
-
关键词:
- 薄壁高强圆钢管混凝土柱 /
- 超限径厚比 /
- 低周往复加载 /
- 抗震性能 /
- 断裂损伤
Abstract: To research the seismic perfomance of concrete-filled thin-walled high-strength steel tubular (CFTHST) columns, a quasi-static test was conducted on concrete-filled thin-walled high-strength Q690 steel tubular columns with diameter-to-thickness (D/t) ratios exceeding regulation limitations. The detailed analysis was performed to examine the failure mode, load-displacement curves, hysteretic energy dissipation, and the degradation laws of stiffness and bearing capacity; subsequently, a finite element damage model of CFTHST column was established based on the dependent fracture criterion of steel stress triaxiality to reveal the damage evolution. The results indicated that:the tested HCFTST columns failed in a way of concrete crushing combined with the local buckling and fracture of high-strength (HS) steel tube; in the drift ratios of 1% to 6%, the load ratios maintained above 0.9 while the load degradation reached up 17.4% to 23.0% in the drift ratios of 7% to 8%; moreover, the tested columns behaved the plump hysteresis curves with the ductility coefficients in the range of 2.88 to 3.61, reflecting that those columns demonstrated a reasonable bearing capacity and plastic deformation; the concrete damage area appeared in V-shaped distribution and the HS steel tube experienced a deep yielding behavior; increasing the axial compression ratio and D/t ratio augmented the fracture damage of the CFTHST columns. -
[1] HAN L H, LI W, BJORHOVDE R. Developments and advanced applications of concrete-filled steel tubular (CFST) structures:members[J]. Journal of Constructional Steel Research, 2014, 100:211-228. [2] DU Y, CHEN Z, WANG Y B, et al. Ultimate resistance behavior of rectangular concrete-filled tubular beam-columns made of high-strength steel[J]. Journal of Constructional Steel Research, 2017, 133:418-433. [3] LI T J, LI G Q, CHAN S L, et al. Behavior of Q690 high-strength steel columns:part 1:experimental investigation[J]. Journal of Constructional Steel Research, 2016, 123:18-30. [4] 韩林海,游经团,杨有福,等.往复荷载作用下矩形钢管混凝土构件力学性能的研究[J].土木工程学报,2004,32(11):11-22. [5] 张素梅,刘界鹏,王玉银,等.双向压弯方钢管高强混凝土构件滞回性能试验与分析[J].建筑结构学报,2005,26(3):9-18. [6] 吴波,赵新宇,张金锁.薄壁圆钢管再生混合柱的抗震性能试验研究[J].土木工程学报,2012,45(11):1-12. [7] ELREMAILY A, AZIZINAMINI A. Behavior and strength of circular concrete-filled tube columns[J]. Journal of Constructional Steel Research, 2002, 58(12):1567-1591. [8] VARMA A H, RICLES J M, SAUSE R, et al. Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns[J]. Journal of Constructional Steel Research, 2002, 58(5):725-758. [9] VARMA A H, RICLES J M, SAUSE R, et al. Seismic behavior and design of high-strength square concrete-filled steel tube beam columns[J]. Journal of Structural Engineering, 2004, 130(2):169-179. [10] MARSON J, BRUNEAU M. Cyclic testing of concrete-filled circular steel bridge piers having encased fixed-based detail[J]. Journal of Bridge Engineering, 2004, 9(1):14-23. [11] SKALOMENOS K A, HAYASHI K, NISHI R, et al. Experimental behavior of concrete-filled steel tube columns using ultrahigh-strength steel[J]. Journal of Structural Engineering, 2016, 142(9):1-13. [12] 中华人民共和国住房和城乡建设部.钢管混凝土结构技术规范:GB 50936-2014[S].北京:中国建筑工业出版社,2014. [13] American National Standards Institute. Specification for structural steel buildings:ANSI/AISC 360-16[M]. Chicago:American Institute of Steel Construction, 2016. [14] HEDAYAT A S, SLOANE N J A, STUFKEN J. Orthogonal arrays:theory and applications[M]. New York:Springer Science+ Business Media LLC, 2012. [15] ZHOU T, CHEN Z, LIU H. Seismic behavior of special shaped column composed of concrete filled steel tubes[J]. Journal of Constructional Steel Research, 2012, 75:131-141. [16] 聂建国,王宇航.ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J].工程力学,2013,30(4):59-67. [17] SAKINO K, NAKAHARA H, MORINO S, et al. Behavior of centrally loaded concrete-filled steel-tube short columns[J]. Journal of Structural Engineering, 2004, 130(2):180-188. [18] 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社,2010. [19] MOHD M H. Nonlinear analysis of prestressed concrete sructures under monotonic and cyclic loads[D]. Berkeley:University of California, 1994. [20] YU H L, JEONG D Y. Application of a stress triaxiality dependent fracture criterion in the finite element analysis of unnotched charpy specimens[J]. Theoretical and Applied Fracture Mechanics, 2010, 54(1):54-62. [21] LI W, LIAO F, ZHOU T, ASKES H. Ductile fracture of Q460 steel:Effects of stress triaxiality and Lode angle[J]. Journal of Constructional Steel Research, 2016, 123:1-17. [22] WIERZBICKI T, BAO Y, LEE Y W, et al. Calibration and evaluation of seven fracture models[J]. International Journal of Mechanical Sciences, 2005, 47(4/5):719-743. [23] MAO C, RICLES J, LU L W, et al. Effect of local details on ductility of welded moment connections[J]. Journal of Structural engineering, 2001, 127(9):1036-1044.
点击查看大图
计量
- 文章访问数: 64
- HTML全文浏览量: 11
- PDF下载量: 5
- 被引次数: 0