Analysis on Influence of Sand Replacement on Responses of Utility Tunnels Through Active Ground Fissures
-
摘要: 在地裂缝广泛分布的城区,城市地下综合管廊建设不可避免会遭受地裂缝活动的影响。基于已有矩形隧道物理模型试验结果,分析地裂缝活动对其破坏作用和过程,并建立其数值模型,对比试验结果验证数值模型的有效性。通过建立地下综合管廊穿越地裂缝的三维有限元模型,设置了50,100,150,200 mm四种不同的沉降量工况以及将换填砂土的长度、高度和角度作为变量的不同工况,进行数值模拟计算。计算结果表明:随着换填砂土的长度、厚度和角度在一定范围内逐渐增大,管廊的最大纵向应力均出现减小的趋势,但超出一定界限后,换填效果减弱,最优的换填砂土长度、厚度和角度分别为6,3 m和60°;砂土换填比未换填管廊的最大纵向应力有明显减小,减小幅度约20%。Abstract: The construction of underground utility tunnels will inevitably be affected by ground fracture activities in urban areas where ground fissures are widely distributed. Based on existing physical model test results of rectangular tunnels, the damage effect and process caused by ground fracture were analyzed, and the numerical model was constructed. The validity of the numerical model was verified by comparing the test results and numerical simulation results. By constructing a three-dimensional finite element model of underground utility tunnels crossing ground fissures, four kinds of settlement cases of 50 mm, 100 mm, 150 mm and 200 mm were setted, and the length, height and angle of sand cushions were taken as variables. Numerical simulations were parformed and the results showed that the maximum longitudinal stress of utility tunnels had a decreasing trend with the gradual increase of the length, thickness and angle of the sand cushions within a certain range. Beyond a certain limit, the trend would abate. The optimal length, thickness and angle of sand cushions were 6 m, 3 m and 60° respectively. The maximum longitudinal stress in underground utility tunnels with sand replacement was significantly reduced by about 20% compared with that of underground utility tunnels which were untreated.
-
Key words:
- underground utility tunnel /
- ground fracture /
- sand replacement /
- longitudinal stress /
- prevention
-
[1] CHEN J,JIANG L Z,LI J,et al.Numerical simulation of shaking table test on utility tunnel under non-uniform earthquake excitation[J].Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research,2012,30:205-216. [2] CANTO P J,CURIEL E J,VICENTE C.Criticality and threat analysis on utility tunnels for planning security policies of utilities in urban underground space[J].Expert Systems with Applications,2013,40(11):4707-4714. [3] WANG S H,NI P P,GUO M D.Spatial characterization of joint planes and stability analysis of tunnel blocks[J].Tunnelling and Underground Space Technology,2013,38:357-367. [4] HUNT D V L,NASH D,ROGERS C D F.Sustainable utility placement via multi-utility tunnels[J].Tunnelling and Underground Space Technology,2014,39(12):15-26. [5] 施有志,华建兵,阮建凑,等.地下综合管廊地震动力响应三维数值分析[J].工程地质学报,2018,26(3):785-793. [6] 戴轩,徐管应,霍海峰,等.管廊隧道开挖对上覆在建深基坑影响的三维有限元分析[J].岩土工程学报,2019,41(增刊1):21-24. [7] 刁钰,郭勇志,宋欣欣,等.管廊接头变形对接头防渗性能的影响[J].土木工程学报,2019,52(增刊1):113-119. [8] 孙书伟,朱本珍,马宁.城市地下综合管廊开挖方法及设计参数分析[J].铁道工程学报,2019,36(3):61-66. [9] 王鹏宇,王述红,杰如拉A.不同加腋厚度单仓管廊力学性能计算与数值分析[J].应用基础与工程科学学报,2019,27(2):442-452. [10] 易伟建,颜良,彭真.无腋角综合管廊结构足尺模型静载试验与有限元分析[J].湖南大学学报(自然科学版),2019,46(7):1-10. [11] 冯立,丁选明,王成龙,等.考虑接缝影响的地下综合管廊振动台模型试验[J].岩土力学,2020,41(4):1295-1304. [12] 彭建兵.西安地裂缝灾害[M].北京:科学出版社,2012. [13] 黄强兵,彭建兵,门玉明,等.地裂缝对地铁明挖整体式衬砌隧道影响机制的模型试验研究[J].岩石力学与工程学报,2008(11):2324-2331. [14] 卢全中,彭建兵,邓亚虹,等.北京北七家-高丽营地裂缝破坏特征及影响带宽度[J].工程勘察,2014,42(6):5-11. [15] WANG F Y,PENG J B,LU Q Z,et al.Mechanism of Fuping Ground Fissure in the Weihe Basin of Northwest China:fault and rainfall[J].Environmental Earth Sciences,2019,78(14):1-10. [16] XU J S,PENG J B,DENG Y H,et al.Development characteristics and formation analysis of Baixiang Earth Fissure on North China Plain[J].Bulletin of Engineering Geology and the Environment,2019,78(5):3085-3094. [17] 卢全中,吴辉龙,彭建兵,等.地裂缝路基土的压缩特性及防治对策[J].中国公路学报,2015,28(7):10-17. [18] 许晨,袁立群,门玉明,等.地铁振动作用下穿越地裂缝隧道-地层动力响应模型试验研究[J].工程地质学报,2018,26(5):1360-1365. [19] 何国辉,黄强兵,王涛,等.高铁路基正交跨越地裂缝带动力响应数值分析[J].工程地质学报,2020,28(1):149-157. [20] 杨招,黄强兵,肖双全,等.地裂缝场地地铁隧道施工CRD工法优化研究[J/OL].工程地质学报.https://kns.cnki.net/kcms/detail/11.3249.P.20200724.1322.006.html. [21] 万佳威,李滨,谭成轩,等.中国地裂缝的发育特征及成因机制研究:以汾渭盆地、河北平原、苏锡常平原为例[J].地质论评,2019,65(6):1383-1396. [22] 彭建兵,范文,李喜安,等.汾渭盆地地裂缝成因研究中的若干关键问题[J].工程地质学报,2007(4):433-440. [23] 闫钰丰,黄强兵,杨学军,等.地下综合管廊穿越地裂缝变形与受力特征研究[J].工程地质学报,2018,26(5):1203-1210. [24] 胡志平,张丹,张亚国,等.地下综合管廊结构斜穿活动地裂缝的变形破坏机制室内模型试验研究[J].岩石力学与工程学报,2019,38(12):2550-2560. [25] 王启耀,卢刚刚,张亚国,等.综合管廊大角度斜穿地裂缝的变形及受力特征研究[J].西安建筑科技大学学报(自然科学版),2019,51(6):825-832. [26] 徐强,白超宇,李文阳,等.地下综合管廊穿越活动地裂缝变形与内力的响应分析[J].工程地质学报,2021,29(5):1632-1659. [27] 周洋.厚杂填土下临河大偏压基坑变形分析[J].建筑技术开发,2020,47(11):162-164.
点击查看大图
计量
- 文章访问数: 78
- HTML全文浏览量: 8
- PDF下载量: 3
- 被引次数: 0