EXPERIMENTAL RESEARCH ON BONDING PROPERTIES OF SHAPE-MEMORY ALLOY FIBERS IN HIGH DUCTILITY CEMENT-BASED COMPOSITES
-
摘要: 高延性水泥基复合材料与超弹性形状记忆合金的协同工作能够提高结构的耗能能力及自修复能力。使用形状记忆合金纤维能够有效克服形状记忆合金棒材或绞线存在的一些问题,具有更广阔应用前景。将不同直径和不同端头形状的超弹性形状记忆合金纤维以不同深度埋入拉伸应变可达3%的高延性水泥基材料中制作了多组试验试件,并通过位移控制加载对其进行拉拔试验,得到了拉拔应力-应变曲线,分析了各因素对形状记忆合金纤维与高延性水泥基复合材料黏结性能的影响。结果表明:打结型端头能有效提高形状记忆合金纤维在高延性水泥基复合材料基体中的黏结强度,为形状记忆合金纤维发挥其超弹性提供足够锚固力,各类型打结型试件的最大拉拔应力均在900 MPa以上,最大可达到1 142.52 MPa,其中1.2 mm打结型形状记忆合金纤维埋深为40 mm的试件的受力性能良好,纤维利用率较高。
-
关键词:
- 形状记忆合金纤维 /
- 高延性水泥基复合材料 /
- 黏结性能 /
- 超弹性
Abstract: The cooperative work of high ductility cement-based composites and hyperelastic shape-memory alloy (SMA) can improve the energy-dissipation capacity and self-repair capacity of structure. The use of shape-memory alloy fiber can effectively solve some problems of shape-memory alloy bars or cables, so it has a broader application prospect. Several groups of test specimens were fabricated by embedding superelastic shape-memory alloy fibers with different diameters and end shapes into high-ductility cement-based materials with up to 3% tensile strain, some of which had different embedded depths. The pull-out tests of specimens were conducted by displacement-controlled loading, the stress-strain curves of pull-out for specimens were obtained, and the effects of various factors on the bonding properties between shape-memory alloy fiber and high-ductility cement-based composites were analyzed. The results showed that the knotted end could greatly improve the bond strength of shape-memory alloy fibers in the high-ductility cement matrix and provide sufficient anchoring forces for shape-memory alloy fibers to exert its superelasticity. The maximum tensile stress of all types of knotted specimens was above 900 MPa, and the maximum could reach 1 142.52 MPa. Among them, the specimen with knotted SMAF with diameter of 1.2 mm and embedded depth of 40 mm had better mechanical properties and fiber utilization ratios. -
[1] Report of the Seventh Joint Planning Meeting of NEES/E. Defense Collaborative Research on Earthquake Engineering[R].PEER 2010/109.Berkeley:UC Berkeley,2010. [2] 吕西林,武大洋,周颖. 可恢复功能防震结构研究进展[J]. 建筑结构学报,2019,40(2):1-15. [3] 崔迪,李宏男,宋钢兵.形状记忆合金在土木工程中的研究与应用进展[J].防灾减灾工程学报,2005(1):86-94. [4] JIA Y Q, LU Z D, LI L Z, et al. A Review of Applications and Research of Shape Memory Alloys in Civil Engineering[J]. IOP Conference Series:Materials Science and Engineering,2018,392(2):1-6. [5] LI V C. ECC-Tailored Composites Through Micromechanical Modeling[C]//Fiber Reinforced Concrete, CSCE. 1998, 64-97. [6] LI V C, WANG S, WU C. Tensile Strain-Hardening Behavior of PVA-ECC[J].ACI, Materials Journal,2001,98(6):483-492. [7] 徐世烺,蔡向荣.超高韧性纤维增强水泥基复合材料基本力学性能[J].水利学报,2009, 40(9):1055-1063. [8] SULEIMAN A R, NEHDI M L. Exploring Effects of Supplementary Cementitious Materials in Concrete Exposed to Physical Salt Attack[J]. Magazine of Concrete Research, 2017,69(11):576-585. https:/doi.org/10.1680/jmacr.16.00406. [9] LI X P, LI M, SONG G B. Energy-Dissipating and Self-Repairing SMA-ECC Composite Material System[J]. Smart Materials and Structures,2015,24(2). https://doi.org/10.1088/0964-1726/24/2/025024. [10] HUNG C C, YEN W M, YU K H.Vulnerability and Improvement of Reinforced ECC Flexural Members Under Displacement Reversals:Experimental Investigation and Computational Analysis[J].Construction and Building Materials, 2016,107:287-298. [11] 张庆元. 超弹性SMA/ECC加固钢筋混凝土梁受弯性能试验研究[D].郑州:郑州大学,2017. [12] 钱辉,裴金召,李宗翱,等.基于SMA/ECC的新型自复位框架节点抗震性能试验研究[J].土木工程学报,2020,53(11):64-73,80. [13] MOSER K, BERGAMINI A, CHRISTEN R,et al. Feasibility of Concrete Prestressed by Shape Memory Alloy Short Fibers[J]. Materials and Structures,2005,38(5).https://doi.org/10.1007/BF02479551. [14] CHOI E, CHUNG Y S, KIM D J, et al. Crack-Curing of Concrete Beams Using Cold-Drawn SMA Reinforcing Fibers[C]//ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014. https://doi.org/10.1115/SMASIS2014-7646. [15] CHOI E, KIM D J, CHUNG Y S, et al. Crack-Closing of Cement Mortar Beams Using NiTi Cold-Drawn SMA Short Fibers[J]. Smart Materials and Structures,2015,24(1).https://doi.org/10.1088/0964-1726/24/1/015018. [16] ALI M A E M, NEHDI M L. Innovative Crack-Healing Hybrid Fiber Reinforced Engineered Cementitious Composite[J]. Construction and Building Materials,2017,150.https://doi.org/10.1016/j.conbuildmat.2017.06.023. [17] ALI M A E M, SOLIMAN A M, NEHDI M L. Hybrid-Fiber Reinforced Engineered Cementitious Composite Under Tensile and Impact Loading[J]. Materials & Design,2017,11. [18] 王钢, 孙明清, 刘记立, 等. SMA丝增强SHCC拉伸时的变形和裂纹自回复性能研究[J]. 硅酸盐通报, 2020,39(6):1728-1733,1741. [19] LI V C. Engineered Cementitious Composites (ECC)-Material, Structural, and Durability Performance[M]. Boca Raton, Florida:CRC Press, 2008. [20] 杨英姿,祝瑜,高小建,等.掺粉煤灰PVA纤维增强水泥基复合材料的试验研究[J].青岛理工大学学报,2009,30(4):51-54,59. [21] 汪卫. ECC优化设计及其框架节点抗震性能研究[D].南京:东南大学,2013. [22] WIEMER N, WETZEL A, SCHLEITING M, et al. Effect of Fibre Material and Fibre Roughness on the Pullout Behaviour of Metallic Micro Fibres Embedded in UHPC[J]. Materials,2020,13(14).
点击查看大图
计量
- 文章访问数: 50
- HTML全文浏览量: 6
- PDF下载量: 0
- 被引次数: 0