EXPERIMENTAL RESEARCH ON REINFORCEMENT METHOD AND BEARING CAPACITY OF STEEL PURLINS ON ROOFS OF LIGHT-GAUGE STEEL PLANTS
-
摘要: 随着光伏发电项目的不断增多,越来越多工业厂房屋面上需增设光伏发电板。屋面使用荷载的增加,导致檩条不能满足承载力要求,需对檩条进行加固设计。结合5 MW自发自用分布式光伏发电项目背景,基于增大截面加固法,提出一种适用于钢檩条加固的新方法,即在原C形截面檩条下翼缘处增设L形角钢构件来进行加固,两者之间通过抽芯铆钉连接。在此基础之上,对3根加固后钢檩条试件开展承载力试验,考察檩条的破坏模式与受力性能,获取了各试件的荷载-位移曲线、荷载-应变曲线、承载力与刚度等。通过有限元软件ABAQUS,对各试验试件建立了准确的有限元模型,并开展数值模拟分析,对比分析了有限元结果与试验结果,验证所提出的加固方法的有效性。研究结果表明:所提出的钢檩条加固方法是切实可行的,加固后钢檩条的承载力和刚度均满足相关技术标准的要求,且极限承载力约为原檩条承载力设计值的1.49倍。Abstract: With the increase of photovoltaic power generation projects, more and more industrial plants have been equipped with photovoltaic panels on the roofs. With the increase of service loads on roof, purlins can not meet the requirements of bearing capacity, so it is often necessary to be reinforced. Combined with the background of a 5 MW self-consumption distributed photovoltaic power generation project, a new method for purlin reinforcement was proposed based on the reinforcement method of enlargement sections, that was, L-shaped angle steel was added at the lower flange of the original C-section purlins for reinforcement, and the two were connected by core-pulling rivets. On that basis, the bearing capacity tests of three reinforced steel purlin specimens were conducted to study the mechanical properties and failure modes of purlins, and the load-displacement curve, load-strain curve, bearing capacity, and stiffness of specimens were obtained. Through the finite element software ABAQUS, the accurate finite element models of specimens were constructed, and the numerical simulation analysis was conducted. The finite element results and test results were compared and analyzed to verify the accuracy of test results and the effectiveness of the new reinforcement method. The results showed that: the new reinforcement method of C-section steel purlins proposed in the paper was feasible. The bearing capacity and stiffness of the reinforced steel purlins could satisfy the requirements of relevant specifications, and the ultimate bearing capacity was about 1.49 times of the design value of bearing capacity of original purlins.
-
Key words:
- steel purlin /
- reinforcement method /
- experimental study /
- C-section /
- core-pulling rivet
-
[1] 吴宗华.钢结构厂房屋顶安置光伏电站的加固设计研究[J].居舍,2020(9):31. [2] 张魁,宗钟凌,朱立位.冷弯薄壁C型钢檩条增设缀板加固方法与力学性能分析[J].建筑技术,2017,48(8):844-846. [3] 赵海斌,包文龙,张良利,等.分布式光伏电站中屋面檩条设计及加固方案探究[J].中国新技术新产品,2019(14):92-94. [4] 佘远善,陈颢元,郭耀杰.冷弯型钢檩条屋面增设光伏板的下撑式檩条结构加固受力性能分析及改造方案[J].科学技术与工程,2020,20(35):14571-14578. [5] 黄炳生,冯方涛,孙留洋,等.既有简支薄壁C型钢檩条连续化加固研究[J].建筑结构学报,2021,42(12):101-112. [6] 郑云,叶列平,岳清瑞.FRP加固钢结构的研究进展[J].工业建筑,2015,45(8):20-25,34. [7] 张正涛,任庆新,任德斌,等.外包钢加固火灾后钢管混凝土叠合短柱轴压性能研究[J].工业建筑,2020,50(10):187-193. [8] 王元清,宗亮,施刚,等.钢结构加固新技术及其应用研究[J].工业建筑,2015,45(2):1-7,22. [9] 中华人民共和国住房和城乡建设部.金属材料拉伸试验第1部分室温试验方法:GB/T 228.1-2010[S].北京:中国建筑工业出版社,2010. [10] TANG J,YOUNG B.Column Tests of Cold-Formed Steel Channels with Complex Stiffeners[J].Journal of Structural Engineering,2002,128(6):737-745. [11] YU C,SCHAFER B W.Local Buckling Tests on Cold-Formed Steel Beams[J].Journal of Structural Engineering,2003,129(12):1596-1606. [12] YU C,SCHAFER B W.Distortional Buckling Tests on Cold-Formed Steel Beams[J].Journal of Structural Engineering,2006,132(4):515-528. [13] 王海明.冷弯薄壁型钢受弯构件稳定性能研究[D].哈尔滨:哈尔滨工业大学,2009. [14] 章阳.冷弯薄壁C形钢受弯构件畸变屈曲和局部屈曲性能研究[D].重庆:重庆大学,2014. [15] NIU S,RASMUSSEN K J R,ASCE M,et al.Local-Global Interaction Buckling of Stainless Steel I-Beams.I:Experimental Investigation[J/OL].Journal of Structural Engineering,2015,141(8).https://doi.org/10.1061/(ASCE) ST.1943-541X.0001137. [16] NIU S,RASMUSSEN K J R,ASCE M,et al.Local-Global Interaction Buckling of Stainless Steel I-Beams.II:Numerical Study and Design[J/OL].Journal of Structural Engineering,2015,141(8).https://doi.org/10.1061/(ASCE) ST.1943-541X.0001131. [17] 丁智霞.考虑局部屈曲卷边C形截面不锈钢构件承载力研究[D].南京:东南大学,2017. [18] 杜利.卷边C形截面不锈钢受弯构件畸变屈曲承载力研究[D].南京:东南大学,2019. [19] 中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017-2017[S].北京:中国建筑工业出版社,2018. [20] 中华人民共和国住房和城乡建设部.门式刚架轻型房屋钢结构技术规范:GB 51022-2015[S].北京:中国建筑工业出版社,2015. [21] European Committee for Standardisation (CEN).Eurocode 3:Design of Steel Structures-Part 1-5:Plated Structural Elements:EN 1993-1-5:2006[S].Burussels,Belgium:CEN,2006.
点击查看大图
计量
- 文章访问数: 292
- HTML全文浏览量: 37
- PDF下载量: 18
- 被引次数: 0