SEISMIC VULNERABILITY ASSESSMENTS FOR OLD BUILDINGS BY DIFFERENT VERSIONS OF SEISMIC DESIGN CRITERIA AND DURABILITY
-
摘要: 在目前的老旧钢筋混凝土框架结构的地震易损性研究中,没有同时考虑不同抗震设计标准差异和耐久性两个因素对结构抗震性能的影响,且表征结构易损性的损伤指数在阈值范围和动力分析中存在局限。有鉴于此,针对不同抗震设计标准造成的结构性能差异,同时考虑混凝土碳化和钢筋锈蚀对结构性能的影响,并根据结构已服役时间对老旧建筑结构的地震作用取值进行调整,构建了3个典型5层钢混框架结构建筑,建立相应的有限元模型并进行增量动力时程分析,采用弹塑性耗能差率和最大层间位移角表征结构损伤并进行地震易损性分析和对比。结果表明:随着抗震设计标准的提升,结构的设计抗震能力有较显著提高而易损性有一定的下降;同一结构的地震易损性因混凝土碳化作用先降低后增加。采用弹塑性耗能差率表征既有建筑结构的地震易损性效果优于最大层间位移角。Abstract: In the current study of seismic vulnerability of old reinforced concrete-frame structure, the influence of different seismic design criteria and durability on the a seismic performance of structure is not considered together, and the damage indicator which characterizes the structural vulnerability has limitations in the threshold range and dynamic analysis. Hence, considering differences of structural performances caused by concrete carbonization and rebar corrosion, based on different versions of seismic design criteria, the seismic action value according to structures service time was adjusted, three typical five-story steel-concrete frame structures were built. The corresponding finite element models were constructed and the incremental dynamic time-history analysis was conducted. The differential ratio of elastic plastic dissipated energy and the maximum interstory drift were used to characterize the structural damage, then the seismic vulnerability was analyzed and compared. The results showed that the a seismic capacity of the designed structure had been significantly improved and the vulnerability had decreased to a certain extent conducted by the updated seismic criteria. The seismic vulnerability of the same structure first decreased and then increased due to concrete carbonation. The differential ratio of elastic plastic dissipated energy was better than the maximum interstory drift to characterize the seismic vulnerability of existing structures.
-
[1] 尚晴晴. 新旧规范设计的框架结构的地震易损性对比分析[D].重庆:重庆大学, 2012. [2] 韩建平. 新旧规范设计RC框架地震易损性分析及抗整体性倒塌能力评估[J]. 建筑结构学报, 2015,36(增刊2):92-99. [3] 陈新孝, 牛荻涛. 在役钢筋混凝土结构的地震破坏评估[J].西安建筑科技大学学报(自然科学版), 2002, 34(4):305-308. [4] 陈志宏. 既有RC框架结构抗震性能评估[D]. 青岛:青岛理工大学, 2014. [5] 何浩祥, 陈奎, 范少勇. 基于弹塑性耗能差率的地震损伤评估模型及分析方法[J]. 振动工程学报, 2018, 31(3):382-390. [6] 房鹏鹏, 张煜, 孙传华, 等. 新旧抗震规范对北京某高层结构设计影响比较[C]//《工业建筑》2018年全国学术年会, 北京:2018. [7] 赵朝林. 新旧建筑抗震设计规范对比研究:以混凝土框架结构为例[D].武汉:武汉理工大学,2013. [8] 牛荻涛. 一般大气环境下混凝土强度经时变化模型[J]. 工业建筑, 1995, 25(6):36-39. [9] 中华人民共和国住房和城乡建设部. 既有混凝土结构耐久性评定标准:GB/T 51355-2019[S]. 北京:中国建筑工业出版社, 2019. [10] XIAO J Z, LI J, ZHU B. Experimental Study on Strength and Ductility of Carbonated Concrete Elements[J]. Construction And Building Materials, 2002, 16(3):187-192. [11] CHANG C F, CHEN J W. Strength and Elastic Modulus of Carbonated Concrete[J]. ACI Materials Journal, 2005, 102(5):315-321. [12] 高向玲. 一般大气环境下混凝土经时抗压强度的变化规律[J]. 土木工程学报, 2015, 48(1):19-26. [13] PAPADAKIS V G, VAYENS C G, FARDIS M N. Fundamental Modeling and Experimental Investigation of Concrete Carbonation[J]. ACI Materials Journal, 1991, 88(4):363-373. [14] 牛荻涛. 一般大气环境混凝土中钢筋锈蚀量的估计[J]. 工程力学, 1997, 14(1):92-98. [15] DU Y G, CLARK L A, CHAN A H C. Residual Capacity of Corroded Reinforcing Bars[J]. Magazine of Concrete Research, 2005, 57(3):135-147. [16] 吴庆, 袁迎曙. 锈蚀钢筋力学性能退化规律试验研究[J].土木工程学报, 2008, 41(12):42-47. [17] 李亚琦. 中国地震危险性特征分区[D].北京:中国地震局工程力学研究所,1999. [18] 谢礼立, 马玉宏. 考虑地震环境的设计常遇地震和罕遇地震的确定[J].建筑结构学报,2002,23(1):43-67. [19] 马玉宏, 赵桂峰, 谢礼立, 等. 重要性不同的现有结构抗震加固设计地震动参数研究[J].地震工程与工程振动,2008(5):43-48. [20] 周锡元, 曾德民, 高晓安. 估计不同服役期结构的抗震设防水准简单方法[J]. 建筑结构, 2002, 32(1):37-40. [21] KRAJCINOVIC D, LEMAITRE J. Continuum Damage Mechanics Theory and Applications[M]. New York:Springer Verilag, 1987:233-294. [22] 于晓辉. 钢筋混凝土框架结构的概率地震易损性与风险分析[D]. 哈尔滨:哈尔滨工业大学,2012.
点击查看大图
计量
- 文章访问数: 130
- HTML全文浏览量: 18
- PDF下载量: 3
- 被引次数: 0