Analysis and Calculations for Bearing Capacity of New Composite CFST Pier Columns Under Axial Compression
-
摘要: 综合圆钢管和矩形单钢管对混凝土的约束效果,提出矩形内配异心双圆的复式钢管混凝土新型墩柱,首先基于极限平衡理论,将组合柱分成考虑长短边变形屈服差异的矩形外钢管、外钢管约束的夹层混凝土和内部圆钢管混凝土三部分,推导出新型墩柱的轴压承载力计算式。其次利用ABAQUS对墩柱进行三维精细有限元分析,得到新型复式钢管混凝土墩柱和矩形单钢管混凝土轴压短柱的破坏形态和轴压极限承载力,均与试验结果吻合较好;然后分析了新型墩柱构件各部分全过程受力机理,并研究混凝土抗压强度、钢管屈服强度、内钢管同含钢率时直径变化、内钢管径厚比、外钢管宽厚比等参数对该类新型墩柱的极限承载力影响。结果表明:轴压极限承载力随混凝土抗压强度、钢管屈服强度增加而提高,随外钢管宽厚比增加而降低;当内钢管含钢率相同时,内钢管直径增大对内层混凝土约束增强,故墩柱的极限承载力提高,但当内钢管直径增大到一定程度时(约2/3外钢管宽度)对轴压极限承载力影响则不大。复式钢管混凝土墩柱轴压承载力计算结果与有限元模拟值相近,两者比值平均为0.923,比值的均方差为0.046。Abstract: The composite concrete-filled steel tubes (CFST) pier column with the cross-section form of outer rectangular-inner double circular was proposed. The composite column was divided into three parts:the outer rectangular steel tube considering deformation yield differences between the long side and the short side, the interlayer concrete confined by the outer steel tube, and two inner circular CFSTs. According to the limit equilibrium theory, calculation formulas of the axial bearing capacity of the column were derived. Afterwards, the FE ABAQUS was used to simulate the axial compressive tests on the composite columns and the rectangular concrete-filled steel tubular stubs, and the failure modes all were in good agreements with test results. Meanwhile, the force mechanism of each component of the composite column was analyzed, and the validity of the FE models were verified. By changing the compressive strength of concrete, the yield strength of steel tubes, the diameter of inner steel tubes with the same steel ratio, the diameter-thickness ratio of inner steel tubes, and the width-thickness ratio of outer steel tubes, the parametric analysis on the ultimate axial compressive capacity of the composite CFST pier column was carried out. The results showed that the ultimate bearing capacity increased with the increase of compressive strength of concrete and yield strength of steel tubes, and decreased with the increase of width-thickness ratio of outer steel tubes. The increasing diameter of the inner steel tubes resulted in the increase of ultimate bearing capacity. However, when the diameter of the inner steel tubes increased to a certain extent (2/3 of the width of the outer steel tube), it had little influence on the ultimate axial compressive capacity. The average ratio of the ultimate axial compressive capacity obtained from FE simulations to the calculated values was 0.923, and the mean square deviation was 0.046.
-
[1] 韩林海.钢管混凝土结构:理论与实践[M].北京:科学出版社, 2016. [2] 方小丹, 林斯嘉. 复式钢管高强混凝土柱轴压试验研究[J]. 建筑结构学报, 2014, 35(4):236-245. [3] TAO Z, HAN L H. Behaviour of concrete-filled double skin rectangular steel tubular beam-columns[J]. Journal of Constructional Steel Research, 2006, 62(7):631-646. [4] 谢力, 陈梦成, 张安哥. 矩形中空夹层钢管混凝土短柱力学性能的数值分析[J]. 华东交通大学学报, 2005(1):4-6. [5] 谢力, 陈梦成, 黄宏. 矩形中空夹层钢管混凝土轴压构件的试验研究[J]. 工业建筑, 2013, 43(5):128-131. [6] 刘礼, 何明胜, 汤建平. 复合矩形与普通矩形钢管混凝土柱轴压性能的分析[J]. 石河子大学学报(自然科学版), 2016, 34(4):506-511. [7] 黄宏, 朱彦奇, 陈梦成, 等. 矩形中空夹层再生混凝土钢管短柱轴压试验研究[J]. 实验力学, 2016, 31(1):67-74. [8] 陈建伟, 苏幼坡, 陈海彬. 基于极限平衡理论的复式钢管混凝土轴心受压承载力计算方法[J]. 土木工程学报, 2013, 46(增刊1):106-110. [9] 查晓雄, 徐海俭. 内配异心及多层钢管混凝土柱承载力统一公式研究[J]. 建筑结构学报, 2015, 36(增刊1):192-198. [10] 龙跃凌, 蔡健, 黄炎生. 矩形钢管混凝土短柱轴压承载力[J]. 工业建筑, 2010, 40(7):95-99. [11] 王娟, 赵均海, 吴赛, 等. 基于统一强度理论的矩形钢管混凝土短柱轴压承载力计算[J]. 建筑科学与工程学报, 2011, 28(3):88-92. [12] 徐海俭. 复式钢管混凝土短柱轴压性能的研究[D]. 哈尔滨:哈尔滨工业大学, 2015. [13] MANDER J B, PRIESTIY M J N, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826. [14] GE H B, USAMI T. Strength analysis of concrete filled thin-walled steel box columns[J]. Journal of Constructional Steel Research, 1994(30):259-281. [15] 蔡绍怀. 现代钢管混凝土结构(修订版)(精)[M]. 北京:人民交通出版社, 2007. [16] SAKINO K, NAKAHARA H, MORINO S, et al. Behavior of centrally loaded concrete-filled steel-tube short columns[J]. Journal of Structural Engineering, 2004, 130(2):180-188. [17] 刘威. 钢管混凝土局部受压时的工作机理研究[D]. 福州:福州大学, 2005. [18] 沈聚敏, 王传志, 江见鲸. 钢筋混凝土有限元与板壳极限分析[M]. 北京:清华大学出版社, 1993. [19] TAO Z, WANG Z B, YU Q. Finite element modelling of concrete-filled steel stub columns under axial compression[J]. Journal of Constructional Steel Research, 2013, 89:121-131. [20] 王志滨. 矩形中空夹层钢管混凝土压弯构件力学性能研究[D]. 福州:福州大学, 2005. [21] 钱稼茹, 张扬, 纪晓东. 复合钢管高强混凝土短柱轴心受压性能试验与分析[J]. 建筑结构学报, 2011, 32(12):162-169. [22] 杜颜胜. 高强钢矩形钢管混凝土柱理论分析及试验研究[D]. 天津:天津大学, 2017.
点击查看大图
计量
- 文章访问数: 115
- HTML全文浏览量: 25
- PDF下载量: 4
- 被引次数: 0