RESEARCH ON ECCENTRIC COMPRESSION PERFORMANCE OF 3D PRINTED CONCRETE WALL
-
摘要: 3D打印技术是智能建造和新型建筑工业化的前沿领域,在建筑领域具有广泛的应用前景。作为结构中承受竖向荷载的主要构件之一,墙体的承载力对于结构安全性至关重要。而实际工程中墙体所受的竖向荷载多为偏心作用,因此考虑不同的墙体截面形式、材料强度以及偏心距等设计了10片打印混凝土墙体,并进行了偏心受压试验研究。研究发现:打印墙体中肋的布置不仅可以增大墙体截面刚度,还可以增强两片打印墙板的联系,提高墙体的整体性,进而提升打印墙体的承载力;使用水泥强度等级越高的混凝土材料,墙体截面刚度越大,荷载作用下竖向位移越小;避免墙体薄弱部位的直接受力能够有效地提高构件的承载力;偏心距的增大能够显著降低构件的承载力,加速构件的破坏。Abstract: 3D printing technique is the frontier field of intelligent construction and new building industrialization. 3D printing technique has a broad application prospect in the construction field. As one of the main components bearing vertical load in the structure, the bearing capacity of the wall is crucial to the structural safety. In practical engineering, the vertical load of the wall is mostly eccentric. Therefore, the paper designed 10 printed concrete walls considering different cross-section forms, material strength and eccentricity, and conducted eccentric compression test on the walls. It was found that the arrangement of ribs in the printed wall could not only increase the stiffness of the wall section, but also enhance the connection between the two printed wall panels, improve the integrity of the wall, and thus improve the bearing capacity of the printed wall. The higher the cement strength grade, the greater the stiffness of concrete wall section, the smaller the vertical displacement under load. Avoiding the direct force of weak parts of the wall could effectively improve the bearing capacity of components. The increase of eccentricity could significantly reduce the bearing capacity of components and accelerate the failure of components.
-
Key words:
- 3D printed concrete wall /
- eccentric compression /
- section form /
- failure phenomenon /
- eccentricity
-
[1] 廖玉平. 加快建筑业转型推动高质量发展:解读《关于推动智能建造与建筑工业化协同发展的指导意见》[J]. 中国勘察设计, 2020(9):20-21. [2] 刘占省, 刘诗楠, 赵玉红, 等. 智能建造技术发展现状与未来趋势[J]. 建筑技术, 2019, 50(7):772-779. [3] 尤完.3D打印建造技术的原理与展望[J]. 建筑技术, 2015, 46(12):1081-1083. [4] 朱彬荣, 潘金龙, 周震鑫, 等. 3D打印技术应用于大尺度建筑的研究进展[J]. 材料导报,2018, 32(23):4150-4159. [5] 王香港, 王申, 贾鲁涛, 等. 3D打印混凝土技术在新冠肺炎防疫方舱中的应用[J]. 混凝土与水泥制品, 2020(4):1-4,13. [6] 张超, 邓智聪, 侯泽宇, 等. 混凝土3D打印研究进展[J]. 工业建筑, 2020, 50(8):16-21. [7] SALET T A, AHMED Z Y, BOS F P, et al. Design of a 3D Printed Concrete Bridge by Testing[J]. Virtual and Physical Prototyping, 2018, 13(3):222-236. [8] 于芳, 翟希梅. 配筋砌块砌体剪力墙平面外偏心受压承载能力试验研究[J]. 建筑结构, 2006(11):64-67. [9] 葛杰, 白洁, 杨燕, 等. 3D打印配筋砌体墙承载力试验研究[J]. 建筑材料学报, 2020, 23(2):414-420. [10] 林超, 郭子雄, 黄群贤, 等. 足尺砌体填充墙RC框架抗震性能试验研究[J]. 建筑结构学报, 2018, 39(9):30-37. [11] 常西栋, 李维红, 王乾. 3D打印混凝土材料及性能测试研究进展[J]. 硅酸盐通报, 2019, 38(8):2435-2441. [12] TAY Y, TING G, QIAN Y, et al. Time Gap Effect on Bond Strength of 3D-Printed Concrete[J]. Virtual and Physical Prototyping, 2019, 14(1):104-113. [13] WOLFS R J M, SUIKER A S J. Structural Failure During Extrusion-Based 3D Printing Processes[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(1):565-584. [14] SUIKER A S J, WOLFS R J M, LUCAS S M, et al. Elastic Buckling and Plastic Collapse During 3D Concrete Printing[J]. Cement and Concrete Research, 2020, 135. DOI: 10.1016/j.cemconres.2020.106016. [15] FURET B, POULLAIN P, GARNIER S. 3D Printing for Construction Based on a Complex Wall of Polymer-Foam and Concrete[J]. Additive Manufacturing, 2019, 28:58-64. [16] HOFFMANN M, SKIBICKI S, PANKRATOW P, et al. Automation in the Construction of a 3D-Printed Concrete Wall with the Use of a Lintel Gripper[J]. Materials, 2020, 13(8). DOI: 10.33po/ma13081800.
点击查看大图
计量
- 文章访问数: 252
- HTML全文浏览量: 55
- PDF下载量: 2
- 被引次数: 0