EXPERIMENTAL RESEARCH AND THEORETICAL ANALYSIS OF SHORT-TERM STIFFNESS OF FILIGREE SLABS
-
摘要: 钢筋桁架混凝土叠合板中预制底板短期刚度的合理取值,直接关系到钢筋桁架混凝土预制底板在短暂设计工况下的验算结果的可靠性。依据JGJ 1—2014《装配式混凝土结构技术规程》设计了3块足尺钢筋桁架混凝土预制底板,尺寸均为3 300 mm×2 200 mm,板厚分别为50 mm(2块),60 mm(1块),并对其进行了静载试验及理论分析。试验及分析结果表明:出露的钢筋桁架参与预制底板的受力,但其作用是有限的,原因是钢筋桁架上部出露部分与板内受力钢筋的受力有差别,导致按等弹性模量法计算的钢筋桁架预制底板刚度值偏大;依据试验结果的分析与对比,反算出采用等弹性模量法计算预制底板总刚度时,应对钢筋桁架部分的换算截面刚度予以折减,即对其计算值乘以系数0.6。Abstract: In the calculation of short-term stiffness of filigree slabs in composite slabs with lattice girders, the reasonable consideration of the contribution of lattice girder's stiffness to filigree slabs is directly related to the checking computations in the short-term design conditions. Three full-scale filigree slabs were designed according to Technical Specification for Precast Concsete Structceres(JGJ 1—2014), including two filigree slabs in thickness of 50 mm and one filigree slab in thickness of 60 mm, with length and width dimensions of 3 300 mm and 2 200 mm. The test and the analysis results showed that the bare top bars participated in bearing construction loads, but their role was limited. The reason was that the mechanical properties of the bare part of lattice girders were different from the part of bars embedded in slabs, which led to the larger stiffness of filigree slabs calculated by the method of equal modulus of elasticity. Based on the analysis and comparison of the test results, when the equal elastic modulus was used to calculate the total stiffness of filigree slabs, the section stiffness of the lattice girders by inverse calculations should be reduced. Then, a reduction factor of 0.6 was proposed.
-
Key words:
- lattice girder /
- short-term stiffness /
- composite slab /
- deflection /
- flexural property
-
[1] CHENG Y M.Optimum Design of Omnia Reinforcement Truss Concrete Plank[J].Advances in Engineering Software,1994,21(3):135-47. [2] 聂建国,陈必磊,陈戈,等.钢筋混凝土叠合板的试验研究[J].工业建筑,2003,33(12):43-46,33. [3] 金凌志,廉德铭,李丽,等.钢筋桁架超高性能混凝土叠合板受弯性能试验研究[J].工业建筑,2020,50(3):69-75. [4] 刘洋,杨思忠.混凝土叠合构件短期刚度计算方法研究[J].混凝土与水泥制品,2019(4):59-64. [5] 汤磊,郭正兴,丁桂平.新型钢筋桁架混凝土叠合双向板结构性能试验研究[J].工业建筑,2013,43(11):49-53. [6] 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社,2010. [7] American Concrete Institute.Building Code Requirements for Structural Concrete:ACI 318-14[S].Farmington Hills:ACI,2014. [8] CSA Group.Design of Concrete Structures:A23.3-14[S].Ontario:Canadian Standards Association,2014. [9] Standards Association of Australia.Australian Standard for Concrete Structures:AS 3600-2018[S].Sydney:Standard Australia Limited,2018. [10] European Committee for Standardization.Eurocode 2:Design of Concrete Structures Part 1-1:General Rules and Rules for Buildings:EN 1992-1-1:2004[S].Brussels:CEN,2004. [11] 李杰,郭魏芬,陈以一,等.无支撑钢筋桁架混凝土叠合板刚度研究[J].低温建筑技术,2014,36(6):64-67. [12] 周广强,张鑫,王顺,等.预应力混凝土钢管桁架叠合板施工阶段短期刚度研究[J].建筑结构,2020,50(6):21-24. [13] 聂建国,姜越鑫,聂鑫,等.叠合板中桁架钢筋对预制板受力性能的影响[J].建筑结构学报,2021,42(1):151-158. [14] 中华人民共和国住房和城乡建设部.装配式混凝土结构技术规程:JGJ 1-2014[S].北京:中国建筑工业出版社,2014. [15] 中华人民共和国住房和城乡建设部.混凝土结构试验方法标准:GB/T 50152-2012[S].北京:中国建筑工业出版社,2012. [16] 刘文政,崔士起,刘传卿,等.预应力混凝土钢桁架叠合板受弯性能试验与理论研究[J].建筑结构学报,2021,42(8):95-106. [17] 中国工程建设标准化协会.钢筋桁架混凝土叠合板应用技术规程:T/CECS 715-2020[S].北京:中国建筑工业出版社,2020. [18] 马祥林.桁架钢筋混凝土叠合板的受力性能研究[D].南京:东南大学,2017. [19] SHANE N,JAMIE G.Experimental Study of Hybrid Precast Concrete Lattice Girder Floor at Construction Stage[J].Structures,2019,20:866-885. [20] BISCHOFF P H.Reevaluation of Deflection Prediction for Concrete Beams Reinforced with Steel and Fiber Reinforced Polymer Bars[J].Journal of Structural Engineering,2005,131(5):752-767. [21] BISCHOFF P H,SCANLON A.Effective Moment of Inertia for Calculating Deflections of Concrete Members Containing Steel Reinforcement and Fiber-Reinforced Polymer Reinforcement[J].ACI Structural Journal,2007,104(1):68-75. [22] 高新宇.钢筋桁架对叠合板底板抗弯性能影响的试验研究[J].工程与建设,2018,32(2):207-209. [23] 于敬海,何梦杰,张波,等.预应力混凝土钢管桁架叠合底板施工阶段受弯性能研究[J].结构工程师,2020,36(6):113-122.
点击查看大图
计量
- 文章访问数: 120
- HTML全文浏览量: 11
- PDF下载量: 5
- 被引次数: 0