EXPERIMENTAL STUDY ON NON-GAUSSIAN DISTRIBUTION CHARACTERISTICS OF FLUCTUATING WIND LOADS ON A LONG-SPAN CURVED ROOF
-
摘要: 在模拟的大气边界层紊流场中对某机场航站楼进行刚性模型同步测压试验,研究大跨度曲面屋盖脉动风荷载非高斯分布特性及非高斯分布区风荷载峰值因子取值方法。根据屋盖结构表面测点在3个典型风向角下的风压数据,分析了屋盖表面脉动风荷载测试信号的平均风压、脉动风压、斜度值和峰度值分布特性,并对比分析了典型位置测点脉动风荷载概率密度分布曲线与标准高斯分布曲线间的差异,发现不同风向角下受流动分离影响剧烈的屋盖迎风前缘及部分曲面弧度变化较大的位置,测点脉动风荷载的斜度、峰度以及概率密度函数较标准高斯分布出现严重偏离,具有显著的非高斯性,为此采用Hermite矩模型计算该曲面屋盖非高斯分布区域测点的风荷载峰值因子,给出了此类复杂大跨曲面屋盖结构风荷载峰值因子较GB 50009—2012《建筑结构荷载规范》取值更为合理的参考取值。Abstract: The non-Gaussian distribution characteristics of fluctuating wind loads on a long-span curved roof and the determination method for the peak factor of wind loads in the non-Gaussian distribation region were studied by using synchronous pressure measurement of rigid models in the turbulent flow field simulated atmospheric boundary layers. According to wind pressure data under three typical wind directions, the characteristics of mean wind pressure, fluctuating wind pressure, skewness and kurtosis of fluctuating wind loads on roof surfaces were analyzed, the differences between the probability density function of fluctuating wind loads and standard Gauss distribution curves were also compared. It was found that the skewness, kurtosis and probability density function of wind loads under different wind directions deviated from the standard Gaussian distribution, which had significant non-Gaussianity. Thus, the Hermite moment model was used to calculate the peak factor of wind loads for measured points in non-Gaussian region of curved roof, which provided more reasonable reference values of peak factors of wind loads for the complex long-span curved roof compared to the values of Load Code for the Design of Building Structures(GB 50009-2012).
-
Key words:
- long-span curved roof /
- fluctuating wind load /
- non-Gaussianity /
- peak factor /
- wind tunnel test
-
[1] SPARKS P R, SCHIFF S D, REINHOLD T A. Wind Damage to Envelopes of Houses and Consequent Insurance Losses[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 53(1/2):145-155. [2] TAMURA Y, CAO S. International Group for Wind-Related Disaster Risk Reduction[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012(104/105/106):3-11. [3] HOLMES J D. Wind Loading of Structures[M]. 3rd Ed. Boca Raton:CRC Press, 2001. [4] 中华人民共和国住房和城乡建设部.建筑结构荷载规范:GB 50009-2012[S]. 北京:中国建筑工业出版社, 2012. [5] 徐海巍, 楼文娟, 余世策. 建筑围护结构内部设计风荷载研究[J]. 建筑结构学报, 2016, 37(12):41-48. [6] KAREEM A, ZHOU Y. Gust Loading Factor:Past, Present and Future[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(12):1301-1328. [7] 李波, 田玉基, 杨庆山. 非高斯风压时程的矩模型变换与峰值因子计算公式[J]. 振动工程学报, 2016, 29(3):395-402. [8] 林巍, 楼文娟, 申屠团兵, 等. 高层建筑脉动风压的非高斯峰值因子方法[J]. 浙江大学学报(工学版), 2012, 46(4):691-697. [9] KUMAR K, STATHOPOULOS T. Wind Loads on Low Building Roofs:A Stochastic Perspective[J]. Journal of Structural Engineering, 2000, 126(8):944-956. [10] KO N H, YOU K P, KIM Y M. The Effect of Non-Gaussian Local Wind Pressures on a Side Face of a Square Building[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(5):383-397. [11] 孙瑛, 武岳, 林志兴, 等. 大跨屋盖结构风压脉动的非高斯特性[J]. 土木工程学报, 2007(4):1-5, 12. [12] 李玉学, 白硕, 杨庆山, 等. 大跨度封闭式柱面屋盖脉动风荷载非高斯分布试验研究[J]. 建筑结构学报, 2019, 40(7):62-69. [13] 叶继红, 侯信真. 大跨屋盖脉动风压的非高斯特性研究[J]. 振动与冲击, 2010, 29(7):9-15, 232. [14] WINTERSTEIN S. Non-Normal Responses and Fatigue Damage[J]. Journal of Engineering Mechanics, 1985, 111(10):1291-1295. [15] KAREEM A, ZHAO J. Analysis of Non-Gaussian Surge Response of Tension Leg Platforms Under Wind Loads[J]. Journal of Offshore Mechanics and Arctic Engineering transactions, 1994, 116(3):137-144. [16] TOGNARELLI M A, ZHAO J, KAREEM A. Equivalent Statistical Cubicization for System and Forcing Nonlinearities[J]. Journal of Engineering Mechanics, ASCE, 1997, 123(8):890-893. [17] KWON D K, KAREEM A. Peak Factors for Non-Gaussian Load Effects Revisited[J]. Journal of Structural Engineering, 2011, 137(12):1611-1619.
点击查看大图
计量
- 文章访问数: 134
- HTML全文浏览量: 12
- PDF下载量: 1
- 被引次数: 0