Research on Shear Behavior of Weakened External Diaphragm Connection Between CFST Column and Beam
-
摘要: 通过对4个十字形外隔板连接钢管混凝土柱-H型钢梁节点试件进行低周反复荷载试验研究了该类型节点的抗剪性能,节点试件的核心区钢管厚度进行了一定程度的削弱。试验中研究的参数包括核心区钢管厚度、外隔板宽度和轴压比大小。4个试件的变形发生于核心区钢管翼缘和外隔板的弯曲、核心混凝土的压碎、钢管腹板的剪切变形甚至屈曲开裂,钢管腹板屈曲开裂是主要的剪切破坏形式。试验和有限元参数化分析均表明抗剪承载力与节点核心区钢管厚度正相关,外隔板宽度和轴压比对抗剪承载力的影响不大。对现有的3种针对于钢管混凝土柱-H型钢梁连接节点的抗剪承载力计算方法进行了对比评价,并结合混凝土核心区的剖切试验观测结果,提出了外隔板连接节点的抗剪承载力计算公式。新计算方法考虑了钢管翼缘和外隔板对抗剪承载力的贡献,其结果与试验值吻合良好,该方法的适用性得以验证,可用于外隔板连接节点的设计应用。Abstract: The shear behavior of crucitorn external diaphragm connection between concrete-filled steel tubular (CFST) column and H-shaped beam was investigated under quasi-static loading. Four joint specimens were designed and tested by weakening the thickness of the steel tube in the panel zone. The studied parameters include the thickness of the steel tube in the panel zone, the width of the external diaphragm, and the axial compression ratio. Deformation phenomena mainly occurred in the panel zone, including the bending of steel tube flange and external diaphragm, the crushing of concrete core, the shear deformation, local buckling and cracking of steel tube web. Local buckling and cracking of steel tube webs were main shear failure modes. Numerically and experimentally parametric studies manifested a positive correlation between the shear bearing capacity and the thickness of the steel tube in the panel zone, whereas the width of the external diaphragm and axial conupression ratio showed an insignificant impact on the shear resistance. Based on the experimental phenomena and the evaluation of three existing calculation methods on frame joints, and considering the effects of steel tube flange and extemal diaphragm on shear behavior, a calculation formula on the shear bearing capacity of external diaphragm connection was proposed. The accuracy and applicability of this calculation formula was verified by the test results, and it could provide a reference for external diaphragm connection design.
-
Key words:
- shear /
- external diaphragm /
- panel zone /
- test /
- calculation method
-
[1] 中国工程建设标准化协会.矩形钢管混凝土结构技术规程:CECS 159:2004[S].北京:中国计划出版社,2004. [2] NAKASHIMA M, INOUE K, TADA M. Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu Earthquake[J]. Engineering Structures,1998, 20(s4/5/6):271-281. [3] WANG Y D, KOETAKA Y, CHAN I, et al. Cyclic behavior of beam-column joints with various yielding modes[J]. Journal of Constructional Steel Research, 2019, 159:245-259. [4] WU L, CHEN Z, RONG B, et al. Panel zone behavior of diaphragm-through connection between concrete-filled steel tubular columns and steel beam[J]. Advances in Structural Engineering, 2016, 19(4):627-641. [5] MORINO S, KAWAGUCHI J, YASUZAKI C, et al. Behavior of concrete-filled steel tubular three-dimensional subassemblages[J]. Research Reports of the Faculty of Engineering Mie University, 1993, 16:61-78. [6] QIN Y, CHEN Z, WANG X. Experimental investigation of new internal-diaphragm connections to CFT columns under cyclic loading[J]. Journal of Constructional Steel Research, 2014, 98:35-44. [7] DU G F, BIE X M, LI Z, et al. Study on constitutive model of shear performance in panel zone of connections composed of CFSSTCs and steel-concrete composite beams with external diaphragm[J]. Engineering Structures,2018, 155:178-191. [8] DOUNG P, SASAKI E. Load-deformation characteristics and performance of internal diaphragm connections to box columns[J].Thin-Walled Structures, 2019,143:1-14. [9] YU Y, LAN L, CHEN Z, et al. Mechanical and seismic behaviors of bottom-flange-bolted upper-flange-welded through-diaphragm connections[J]. Journal of Constructional Steel Research, 2019, 156:86-95. [10] NISHIYAMA I, FUJIMOTO T, FUKUMOTO T, et al. Inelastic force-deformation response of joint shear panels in beam-column moment connections to concrete-filled tubes[J]. Journal of Structural Engineering, 2004, 130(2):244-252. [11] FUKUMOTO T, MORITA K. Elastoplastic behavior of panel zone in steel beam-to-concrete filled steel tube column moment connections[J]. Journal of Structural Engineering. 2005,131(12):1841-1853. [12] LIU X G, TAO M X, FAN J S, et al. Comparative study of design procedures for CFST-to-steel girder panel zone shear strength[J]. Journal of Constructional Steel Research, 2014, 94(94):114-121. [13] 聂建国,秦凯.方钢管混凝土柱节点抗剪受力性能的研究[J].建筑结构学报,2008,28(4):8-17. [14] 聂建国,秦凯.方钢管混凝土柱和钢-混凝土组合梁连接节点的抗震性能试验研究[J].钢结构,2008, 64(10):1178-1191. [15] 中华人民共和国住房和城乡建设部.钢结构设计规范:GB 50017-2017[S].北京:中国建筑工业出版社,2018. [16] 中华人民共和国国家质量监督检验检疫总局.金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1-2010[S].北京:中国标准出版社,2011. [17] 中华人民共和国住房和城乡建设部.建筑抗震试验规程:JGJ/T 101-2015[S].北京:中国建筑工业出版社,2015. [18] Architectural Institute of Japan. Recommendations for design and construction of concrete filled steel tubular structures[S]. Tokyo:AIJ, 1987. [19] RONG B, YANG Z H, ZHANG R Y, et al. Postbuckling shear capacity of external diaphragm connections of CFST structures[J]. Journal of Structural Engineering., 2019, 145(5).DOI:10.1061/(ASCE) ST.1943-541X.0002325. [20] KANATANI H, TABUCHI M, KAMBA T, et al. A study on concrete filled RHS column to H-beam connections fabricated with HT bolts in rigid frames[C]//Composite Construction in Steel&Concrete. Henniker, New Hampshire:1987. [21] RONG B, LIU S, YAN J B, et al. Shear behavior of panel zone in through-diaphragm connections to steel tubular columns[J] Thin-Walled Structures, 2018, 122:286-299. [22] RONG B, YIN S H. Seismic performance of beam-to-SST column connection with external diaphragm[J]. Steel and Composite Structures, 2020, 37(6):633-647. [23] WANG J, GUO L. Experimental and analytical behavior of square CFDST column blind bolted to steel beam connections[J]. International Journal of Steel Structures, 2020, 20:612-635. [24] 聂建国,徐桂根.方钢管混凝土柱节点的抗剪受力分析[J].清华大学学报(自然科学版), 2009,49(6):798-802.
点击查看大图
计量
- 文章访问数: 100
- HTML全文浏览量: 21
- PDF下载量: 3
- 被引次数: 0