EFFECT OF CURING SYSTEM ON RESIDUAL MECHANICAL PROPERTIES OF ULTRA-HIGH PERFORMANCE CONCRETE EXPOSED TO ELEVATED TEMPERATURE
-
摘要: 对48个超高性能混凝土(UHPC)立方体抗压试件采用洒水养护、热水养护、洒水-干热养护和热水-干热养护,对18个UHPC哑铃形抗拉试件进行热水养护和热水-干热组合养护,养护完成后分别测定抗压试件和抗拉试件高温作用后的残余抗压强度和残余抗拉强度。结果表明:采用洒水-干热(105℃)组合养护和热水-干热组合养护的立方体试件分别在348,370℃的高温作用下发生爆裂,且这两种组合养护方式下的试件抗压强度相较于单一洒水养护和单一热水养护方式下的分别降低36.73%和14.56%。采用洒水-干热(200℃)组合养护的立方体试件残余抗压强度随着目标温度的增加呈先上升后下降的趋势,临界温度为300℃,该养护方式不仅提高了UHPC的高温残余抗压强度,同时立方体试件均未发生爆裂。采用热水-干热(105℃)养护的哑铃型试件残余抗拉强度随目标温度的提升呈先上升后下降的趋势,该组合养护方式下试件的抗拉强度仅为热水养护的54.05%,当目标温度超过400℃时,哑铃型试件发生爆裂。Abstract: Axial compressive tests were conducted on 48 UHPC (ultra-high performance concrete) cubes cured under sprinkler curing, hot water curing, sprinkler-dry air combined curing, and hot water and dry air combined curing respectively to investigate residual compressive strength of heat-damaged. Axial tensile tests were conducted on 18 dumbbell-shaped specimens cured under hot water curing and hot water and dry air combined curing respectively to investigate the residual tensile strength. The test results showed that compared with the corresponding mono-curing regime, the compressive strength of the specimens subjected to sprinkling-dry air (105 ℃) combined curing and hot water and dry air (105 ℃) combined curing decreased by 36.73% and 14.56%, respectively, and spalled at the temperature of 348 ℃ and 370 ℃, respectively. The residual compressive strength of UHPC subjected to sprinkling-dry air (200 ℃ ) curing regime increased at first and then decreased during the increase of temperature, and the critical temperature was 300 ℃, at which showed the best explosive spalling resistance performance. Residual axial tensile strength of specimen subjected to hot water and dry air (105 ℃) curing also increased firstly and then decreased with the increasing temperature, the axial tensile strength cured under hot water and dry air (105 ℃) curing was only 54.05% of that under hot water curing. The dumbbell-shaped specimens could not avoid the occurrence of explosive spalling when the temperature was over 400 ℃.
-
LI Y E, GUO L, RAJLIC B, et al. Hodder Avenue Underpass:An Innovative Bridge Solution with Ultra-High Performance Fibre-Reinforced Concrete[J]. Key Eng Mater, 2015, 629/630:37-42. JIA L J, HUI H B, YU Q H, et al. The Application and Development of Ultra-High-Performance Concrete in Bridge Engineering[J]. Adv Mater Res, 2014, 859(5):238-242. 王德辉, 史才军, 吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报, 2016, 35(1):141-149. 王铮. 混凝土高温后力学性能的试验研究[D]. 大连:大连理工大学, 2010. 欧阳利军, 许峰, 高皖扬,等. 玄武岩纤维布约束高温损伤混凝土方柱轴压力学性能试验研究[J]. 复合材料学报, 2019,36(2):469-481. TAI Y S, PAN H H, KUNG Y N. Mechanical Properties of Steel Fiber Reinforced Reactive Powder Concrete Following Exposure to High Temperature Reaching 800℃[J]. Nucl Eng Des, 2011, 241(7):2416-2424. 朋改非, 杨娟, 石云兴. 超高性能混凝土高温后残余力学性能试验研究[J]. 土木工程学报, 2017(4):73-79. KANG S H, HONG S G, MOON J. Importance of Drying to Control Internal Curing Effects on Field Casting Ultra-High Performance Concrete[J]. Cem Concr Res, 2018, 108:20-30. KODUR V K R, BHATT P P, SOROUSHIAN P, et al. Temperature and Stress Development in Ultra-High Performance Concrete During Curing[J]. Constr Build Mater, 2016, 122:63-71. CANBAZ M. The Effect of High Temperature on Reactive Powder Concrete[J]. Constr Build Mater, 2014, 70(15):508-513. 张胜, 周锡玲, 谢友均,等. 养护制度对活性粉未混凝土强度及微观结构影响的研究[J]. 混凝土, 2007(6):16-18. HIREMATH P, YARAGAL S C. Investigation on Mechanical Properties of Reactive Powder Concrete Under Different Curing Regimes[J]. Mater Today Pro, 2017, 4(4):9758-9762. MOSTOFINEJAD D, NIKOO M R, HOSSEINI S A. Determination of Optimized Mix Design and Curing Conditions of Reactive Powder Concrete (RPC)[J]. Constr Build Mater, 2016, 123:754-767. ALLENA S, NEWTSON C M. Ultra-High Strength Concrete Mixtures Using Local Materials[J]. J Civ Arch, 2011, 5(4):322-330. 牛旭婧, 朋改非, 尚亚杰,等. 热水-干热组合养护对超高性能混凝土力学性能的影响[J]. 硅酸盐学报, 2018,46(8):1141-1146. 李海艳. 活性粉末混凝土高温爆裂及高温后力学性能研究[D]. 哈尔滨:哈尔滨工业大学, 2012. 杨娟, 朋改非. 纤维对超高性能混凝土残余强度及高温爆裂性能的影响[J]. 复合材料学报, 2016, 33(12):2931-2940. FU Y F, WONG Y L, POON C S, et al. Literature Review of Study on Mechanism of Explosive Spalling in Concrete at Elevated Temperatures[J]. J Build Mater, 2006, 9(3):323-329. 杨娟, 朋改非. 钢纤维类型对超高性能混凝土高温爆裂性能的影响[J]. 复合材料学报, 2018,35(6):1599-1608. MISSEMER L, OUEDRAOGO E, MALECOT Y, et al. Fire Spalling of Ultra-High Performance Concrete:From a Global Analysis to Microstructure Investigations[J]. Cem Concr Res, 2019, 115:207-219. ZDEB T. An Analysis of the Steam Curing and Autoclaving Process Parameters for Reactive Powder Concretes[J]. Constr Build Mater, 2017, 131:758-766. LIU J H, SONG S. Effects of Curing Systems on Properties of High Volume Fine Mineral Powder RPC and Appearance of Hydrates[J]. J Wuhan Univ Technol, 2010, 25(4):619-623. YAZICI H, DENIZ E, BARADAN B. The Effect of Autoclave Pressure, Temperature and Duration Time on Mechanical Properties of Reactive Powder Concrete[J]. Constr Build Mater, 2013, 42(9):53-63. PENG G F, HUANG Z S. Change in Microstructure of Hardened Cement Paste Subjected to Elevated Temperatures[J]. Constr Build Mater, 2008, 22(4):593-599. SANCHAYAN S, FOSTER S J. High Temperature Behaviour of Hybrid Steel-PVA Fibre Reinforced Reactive Powder Concrete[J]. Mater Struct, 2016, 49(3):769-782. YANG S L, MILLARD S G, SOUTSOS M N, et al. Influence of Aggregate and Curing Regime on the Mechanical Properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC)[J]. Constr Build Mater, 2009, 23(6):2291-2298. BACH T T H, COUMES C C D, POCHARD I, et al. Influence of Temperature on the Hydration Products of Low pH Cements[J]. Cem Concr Res, 2012, 42(6):805-817. WANG D, SHI C, WU Z, et al. A Review on Ultra High Performance Concrete:Part Ⅱ. Hydration, Microstructure and Properties[J]. Constr Build Mater, 2015, 96:368-377. SARWAR M A. Characterizing Temperature Induced Strength Degradation and Explosive Spalling in Ultra High Performance Concrete[M]. East Lansing:Michigan State University, 2017. WANG D, SHI C, WU Z, et al. A Review on Ultra High Performance Concrete:Part Ⅱ. Hydration, Microstructure and Properties[J]. Constr Build Mater, 2015, 96:368-377. JU Y, WANG L, LIU H, et al. An Experimental Investigation of the Thermal Spalling of Polypropylene-Fibered Reactive Powder Concrete Exposed to Elevated Temperatures[J]. Sci Bull, 2015, 60(23):2022-2053. RASHAD A M, BAI Y, BASHEER P A M, et al. Chemical and Mechanical Stability of Sodium Sulfate Activated Slag After Exposure to Elevated Temperature[J]. Cem Concr Res, 2012, 42(2):333-343. RASHAD A M, ZEEDAN S R. A Preliminary Study of Blended Pastes of Cement and Quartz Powder Under the Effect of Elevated Temperature[J]. Constr Build Mater, 2012, 29(4):672-681. ABID M, HOU X, ZHENG W, et al. High Temperature and Residual Properties of Reactive Powder Concrete-A Review[J]. Constr Build Mater, 2017, 147:339-351. 陆洲导, 林晨旭, 余江滔,等. 可用于无钢筋建造的超强超韧水泥基复合材料[J]. 同济大学学报(自然科学版), 2017, 45(6):880-884. 邓宗才, 肖锐, 申臣良. 超高性能混凝土的制备与性能[J]. 材料导报, 2013, 27(9):66-95. 史才军, 何稳, 吴泽媚,等. 纤维对UHPC力学性能的影响研究进展[J]. 硅酸盐通报, 2015, 34(8):2227-2236. 刘红彬. 活性粉末混凝土的高温力学性能与爆裂的试验研究[D]. 北京:中国矿业大学, 2012. 鞠杨,刘红彬,孙华飞. 活性粉末混凝土的制备与物理力学性能[M]. 北京:科学出版社, 2017. TAI Y S, EL-TAWIL S, CHUNG T H. Performance of Deformed Steel Fibers Embedded in Ultra-High Performance Concrete Subjected to Various Pullout Rates[J]. Cem Concr Res, 2016, 89:1-13. PYO S, EL-TAWIL S. Crack Velocity-Dependent Dynamic Tensile Behavior of Concrete[J]. Int J Impact Eng, 2013, 55(5):63-70. ANSON M, PENG G F, CHAN S Y N. Chemical Kinetics of CSH Decomposition in Hardened Cement Paste Subjected to Elevated Temperatures up to 800℃[J]. Adv Cem Res, 2001, 13(2):47-52.
点击查看大图
计量
- 文章访问数: 74
- HTML全文浏览量: 16
- PDF下载量: 3
- 被引次数: 0